Module No.:physics70aCredit Points (CP):3-6Category:ElectiveSemester:1.-2.

Module: Elective Advanced Lectures: Experimental Physics

Module Elements:

Nr.	Course Title	Number	СР	Туре	Workload	Sem.
1.	Selected courses from catalogue type "E" (Experimental) or "E/A" (E/Applied)	see catalogue	3-6	see catalogue	90-180 hrs	ST/WT
2.	Also possible classes from M.Sc. in Astrophysics					

Requirements for Participation:

none

Form of Examination:

see with the course

Content:

Advanced lectures in experimental physics

Aims/Skills:

Preparation for Master's Thesis work; broadening of scientific knowledge

Course achievement/Criteria for awarding cp's:

see with the course

Length of Module: 1 or 2 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

s. https://basis.uni-bonn.de u. http://bamawww.physik.uni-bonn.de

Note: The student must achieve at least 18 CP out of all 4 Elective Advanced Modules

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Particle Astrophysics and Cosmology (E)

Course No.: physics711

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+1	6	WT

Requirements for Participation:

Preparation:

physics611 (Particle Physics), useful: Lectures Observational Astronomy

Form of Testing and Examination:

Requirements for the examination (written): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Basics of particle astrophysics and cosmology

Contents of the Course:

Observational Overview (distribution of galaxies, redshift, Hubble expansion, CMB, cosmic distance latter, comoving distance, cosmic time, comoving distance and redshift, angular size and luminosity distance); Standard Cosmology (cosmological principle, expansion scale factor, curved space-time, horizons, Friedmann-Equations, cosmological constant, cosmic sum rule, present problems); Particle Physics relevant to cosmology (Fundamental Particles and their Interactions, quantum field theory and Lagrange formalism, Gauge Symmetry, spontaneous symmetry breaking and Higgs mechanism, parameters of the Standard Model, Running Coupling Constants, CP Violation and Baryon Asymmetry, Neutrinos); Thermodynamics in the Universe (Equilibrium Thermodynamics and freeze out, First Law and Entropy, Quantum Statistics, neutrino decoupling, reheating, photon decoupling); Nucleosynthesis (Helium abundance, Fusion processes, photon/baryon ratio)

Dark Matter (Galaxy Rotation Curves, Clusters of Galaxies, Hot gas, Gravitational lensing, problems with Cold Dark Matter Models, Dark Matter Candidates); Inflation and Quintessence; Cosmic Microwave Background (origin, intensity spectrum, CMB anisotropies, Temperature correlations, power spectrum, cosmic variance, density and temperature fluctuations, causality and changing horizons, long and short wavelength modes, interpretation of the power spectrum)

1

Recommended Literature:

A. Liddle; An Introduction to Modern Cosmology (Wiley & Sons 2. Ed. 2003)

E. Kolb, M. Turner; The Early Universe (Addison Wesley 1990)

J. Peacock; Cosmological Physics (Cambridge University Press 1999)

Physics

physics70b Elective Advanced Lectures: Applied Physics

Course: universitätbonr

Advanced Electronics and Signal Processing (E/A)

Course No.: physics712

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+1	6	ST

Requirements for Participation:

Preparation:

Electronics laboratory of the B.Sc. in physics programme

Recommended: module nuclear and particle physics of the B.Sc. programme

Form of Testing and Examination:

Requirements for the examination (written): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Comprehension of the basics of electronics circuits for the processing of (detector) signals, mediation of the basics of experimental techniques regarding electronics and micro electronics as well as signal processing

Contents of the Course:

The physics of electronic devices, junctions, transistors (BJT and FET), standard analog and digital circuits, amplifiers, elements of CMOS technologies, signal processing, ADC, DAC, noise sources and noise filtering, coupling of electronics to sensors/detectors, elements of chip design, VLSI electronics, readout techniques for detectors

Recommended Literature:

- P. Horowitz, W. Hill; The Art of Electronics (Cambridge University Press 2. Aufl. 1989)
- S. Sze; The Physics of Semiconductor Devices (Wiley & Sons 1981)
- H. Spieler, Semiconductor detector system (Oxford University Press 2005))
- J. Krenz; Electronics Concepts (Cambridge University Press 2000)

Modules: physics70a Elective Advanced Lectures: Experimental

Physics

physics70b Elective Advanced Lectures: Applied Physics

Course: universitätboni

Particle Detectors and Instrumentation (E/A)

Course No.: physics713

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with laboratory	English	3+1	6	ST

Requirements for Participation:

Preparation:

Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Designing an experiment in photoproduction on pi-0, selection and building of appropriate detectors, set-up and implementation of an experiment at ELSA

Contents of the Course:

Quark structure of mesons and baryons, nucleon excitation; electromagnetic probes, electron accelerators, photon beams, relativistic kinematics interaction of radiation with matter, detectors for photons, leptons and hadrons; laboratory course: setup of detectors and experiment at ELSA

Recommended Literature:

B. Povh, K. Rith, C. Scholz, F. Zetsche; Teilchen und Kerne (Springer, Heidelberg 6. Aufl. 2004) Perkins; Introduction to High Energy Physics (Cambridge University Press 4. Aufl. 2000) W. R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2. Ed. 1994) K. Kleinknecht; Detektoren für Teilchenstrahlung (Teubner, Wiesbaden 4. überarb. Aufl. 2005)

Physics

physics70b Elective Advanced Lectures: Applied Physics

Course: univers

universität**bonn**

Advanced Accelerator Physics (E/A)

Course No.: physics714

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+1	6	ST/WT

Requirements for Participation:

Preparation:

Accelerator Physics (physics612)

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding of the physics of synchrotron radiation and its influence on beam parameters Basic knowledge of collective phenomena in particle accelerators

General knowledge of applications of particle accelerators (research, medicine, energy management)

Contents of the Course:

Synchrotron radiation:

radiation power, spatial distribution, spectrum, damping, equilibrium beam emittance, beam lifetime Space-charge effects:

self-field and wall effects, beam-beam effects, space charge dominated beam transport, neutralization of beams by ionization of the residual gas

Collective phenomena:

wake fields, wake functions and coupling impedances, spectra of a stationary and oscillating bunches, bunch interaction with an impedance, Robinson instability

Applications of particle accelerators:

medical accelerators, neutrino facilities, free electron lasers, nuclear waste transmutation, etc.

Recommended Literature:

F. Hinterberger; Physik der Teilchenbeschleuniger und Ionenoptik (Springer, Heidelberg 1997)

H. Wiedemann; Particle Accelerator Physics (Springer, Heidelberg 2 Aufl. 1999)

K. Wille; Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen (Teubner, Wiesbaden 2. Aufl. 1996)

D. A. Edwards, M.J. Syphers; An Introduction to the Physics of High Energy Accelerators (Wiley & Sons 1993)

A. Chao; Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley & Sons 1993)

Script of the Lecture Particle Accelerators (physics612)

http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/

Module: Elective Advanced Lectures:

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Experiments on the Structure of Hadrons (E)

Course No.: physics715

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1	4	WT

Requirements for Participation:

Preparation:

Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding the structure of the nucleon, understanding experiments on baryon-spectroscopy, methods of identifying resonance contributions, introduction into current issues in meson-photoproduction

Contents of the Course:

Discoveries in hadron physics, quarks, asymptotic freedom and confinement; multiplets, symmetries, mass generation; quark models, baryon spectroscopy, formation and decay of resonances, meson photoproduction; hadronic molecules and exotic states

Recommended Literature:

Perkins, Introduction to High Energy Physics (Cambridge University Press 4. Aufl. 2000) K. Gottfried, F. Weisskopf; Concepts of Particle Physics (Oxford University Press 1986) A. Thomas, W. Weise, The Structure of the Nucleon (Wiley-VCH, Weinheim, 2001)

Module: Elective Advanced Lectures:

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Statistical Methods of Data Analysis (E)

Course No.: physics716

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1		ST

Requirements for Participation:

Preparation:

Form of Testing and Examination:

Requirements for the examination (written): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Provide a foundation in statistical methods and give some concrete examples of how the methods are applied to data analysis in particle physics experiments

Contents of the Course:

Fundamental concepts of statistics, probability distributions, Monte Carlo methods, fitting of data, statistical and systematic errors, error propagation, upper limits, hypothesis testing, unfolding

Recommended Literature:

R. Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences; J. Wiley Ltd. Wichester 1993

S. Brandt: Datenanalyse (Spektrum Akademischer Verlag, Heidelberg 4. Aufl. 1999)

Experimental Physics

Module No.: physics70a

Course: universitätbonn

High Energy Physics Lab (E)

Course No.: physics717

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Laboratory	English		4	WT/ST

Requirements for Participation:

Preparation:

Recommended: B.Sc. in physics, physics611 (Particle Physics) or physics618 (Physics of Particle Detectors)

Form of Testing and Examination:

Credit points can be obtained after completion of a written report or, alternatively, a presentation in a meeting of the research group.

Length of Course:

4-6 weeks

Aims of the Course:

This is a research internship in one of the high energy physics research groups which prepare and carry out experiments at external accelerators. The students deepen their understanding of particle and/or detector physics by conducting their own small research project as a part-time member of one of the research groups. The students learn methods of scientific research in particle physics data analysis, in detector development for future colliders or in biomedical imaging (X-FEL) and present their work at the end of the project in a group meeting.

Contents of the Course:

Several different topics are offered among which the students can choose. Available projects can be found at http://heplab.physik.uni-bonn.de. For example:

- Analysis of data from one of the large high energy physics experiments (ATLAS, DØ, ZEUS)
- Investigation of low-noise semiconductor detectors using cosmic rays, laser beams or X-ray tubes
- Study of particle physics processes using simulated events
- Signal extraction and data mining with advanced statistical methods (likelihoods, neural nets or boosted decision trees)

Recommended Literature:

Will be provided by the supervisor

Physics

physics70b Elective Advanced Lectures: Applied Physics

Course: universitätbonr

Programming in Physics and Astronomy with C++ or Python (E/A)

Course No.: physics718

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1		ST

Requirements for Participation:

Preparation:

Basic knowledge of programming and knowledge of simple C/C++ or Python constructs.

Form of Testing and Examination:

C/C++ part: Requirements for the examination (written or oral): successful work with the exercises. Python part: Requirements for examination: successful implementation of the scientific projects in Python during the semester.

Length of Course:

1 semester

Aims of the Course:

C++ part: In-depth understanding of C++ and its applications in particle physics. Discussion of advanced features of C++ using examples from High Energy Physics. The course is intended for students with some background in C++ or for advanced students who wish to apply C++ in their graduate research. Python part: Effective and flexible program solving with the easy-to-learn, high level programming language Python. The course addresses master and PhD students with prior Python-programming knowledge as taught in the bachelor course physics131.

Contents of the Course:

C++ part: - Basic ingredients of C++, - Object orientation: classes, inheritance, polymorphism, - How to solve physics problems with C++, - Standard Template Library, - C++ in data analysis, example: the ROOT library, - C++ and large scale calculations, - How to write and maintain complex programs, - Parallel computing and the Grid, - Debugging and profiling

Python part: - In-depth introduction to Python based on prior programming experience, - Introduction to numpy arrays (primary Python data structure for scientific computing), - Introduction to scientific-Python modules (scipy, astropy), - Interactive work / development with Python (ipython), - Web interaction with Python (jupyter notebooks, web and database queries), - Plotting with Python (the matplotlib module)

Recommended Literature:

Eckel: Thinking in C++, Prentice Hall 2000.

Lippman, Lajoie, Moo: C++ Primer, Addison-Wesley 2000.

Deitel and Deitel, C++ how to program, Prentice Hall 2007.

Stroustrup, The C++ Programming Language, Addison-Wesley 2000.

- The course is given in the summer term and alternates between C++ and Python
- The course can only be taken once for credit points.

Module: Elective Advanced Lectures:

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Intensive Week: Advanced Topics in High Energy Physics (E)

Course No.: physics719

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Combined lecture, seminar, lab	English	2	3	WT/ST
	course				

Requirements for Participation:

Preparation:

Fundamentals of particle physics

Form of Testing and Examination:

Seminar talk

Length of Course:

1 - 2 weeks

Aims of the Course:

This course is about an advanced, current topic in particle physics. The students will gain insights into recent developments in particle physics and participate in lectures, seminars talks and laboratory projects.

Contents of the Course:

As announced in the course catalogue. The main topic will vary from semester to semester.

Recommended Literature:

Will be given in the lecture.

Module: Elective Advanced Lectures:

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Physics with Antiprotons (E)

Course No.: physics720

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture	English	2	3	WT

Requirements for Participation:

Preparation:

Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:

Written or oral examination

Length of Course:

1 semester

Aims of the Course:

Insight in current research topics with antiprotons, understanding experimental methods in particle and nuclear physics, understanding interrelations between different fields of physics such as hadron physics, (astro-)particle physics, atomic physics

Contents of the Course:

Matter-antimatter asymmetry, test of the standard model, anti-hydrogen, anti-protonic atoms, antiproton beams, key issues in hadron physics with antiprotons, planned research facilities (FAIR) and experiments (PANDA)

Recommended Literature:

B. Povh, K. Rith, C. Scholz, F. Zetsche; Teilchen und Kerne (Springer, Heidelberg 8. Aufl. 2009) D.H. Perkins; Introduction to High Energy Physics (Cambridge University Press 4. Aufl. 2000) further literature will be given in the lecture

10 June 2010

Module: Elective Advanced Lectures:

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Intensive Week: Advanced Topics in Hadron Physics (E)

Course No.: physics721

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Combined lecture, seminar, lab	English	2	3	WT/ST
	course				

Requirements for Participation:

Preparation:

Fundamentals of hadron physics

Form of Testing and Examination:

Presentation, working group participation

Length of Course:

1 - 2 weeks

Aims of the Course:

This course will convey recent topics in hadron physics. Guided by lectures, original publications and tutors, the students will prepare a proposal for a planned or recent experiment. The class will not only focus on the experimental aspects, but also on the theoretical motivation for the experiment.

Contents of the Course:

As announced in the course catalogue. The main topics will vary from semester to semester.

Recommended Literature:

Will be given in the lecture

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Advanced Gaseous Detectors - Theory and Practice (E)

Course No.: physics722

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with laboratory	English	3+1	6	ST

Requirements for Participation:

Preparation:

Completed B.Sc. in physics, with experience in electrodynamics, quantum mechanics, nuclear and particle physics, physics618 (Physics of Particle Detectors)

Form of Testing and Examination:

Form of examination: written or oral report

Length of Course:

1 semester

Aims of the Course:

- Design, construction, commissioning and characterization of a modern gaseous particle detector
- Simulations: GARFIELD, GEANT, FE-Methods, etc.
- Signals, Readout electronics and Data Acquisition
- Data analysis: pattern recognition methods, track fitting
- Scientific writing: report

Contents of the Course:

- Signal formation in detectors
- Microscopic processes in gaseous detectors
- Readout electronics
- Tools for detector design and simulation
- Performance criteria
- Laboratory course: commissioning of detector with sources, beam test at accelerator
- Track reconstruction

Recommended Literature:

http://root.cern.ch

http://garfieldpp.web.cern.ch/garfieldpp/

Blum, Rolandi, Riegler: Particle Detection with Drift Chambers

Spieler: Semiconductor Detector Systems

12 August 2014

Physics

physics70b Elective Advanced Lectures: Applied Physics

Course: universitätboni

Hands-on Seminar: Detector Construction (E/A)

Course No.: physics723

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Laboratory	English	2	3	WT/ST

Requirements for Participation:

Basic knowledge of particle physics

Preparation:

physics618 is helpful but not mandatory

Form of Testing and Examination:

Credit points can be obtained after successful construction and operation of the detector and preparing a written and/or oral report on a specific task

Length of Course:

1 semester

Aims of the Course:

Students will design, construct, assemble and operate a particle detector.

Contents of the Course:

Students will construct, assemble and commission a particle detector. They will gain hands-on experience on detector construction. The students organize and execute the tasks of the project in personal responsibility. This includes many tasks common to more complex research or industrial projects. Topics include:

- order the needed detector components
- prepare CAD drawings
- prepare PCB layout
- develop electronic circuits
- produce and assemble detector parts
- vacuum technology
- cooling technology
- organize the work effort in personal responsibility
- communicate with team members and technical staff

Recommended Literature:

H. Kolanoski, N. Wermes, Teilchendetektoren, (Springer, Heidelberg, 2016)

W. R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2. Ed. 1994)

K. Kleinknecht; Detektoren für Teilchenstrahlung (Teubner, Wiesbaden 4. überarb. Aufl. 2005)

13 July 2018

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Advanced Methods of Data Analysis (E)

Course No.: physics724

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1	4	WT/ST

Requirements for Participation:

The course builds on the knowledge taught in physics716 Statistical Methods of Data Analysis and is designed as a follow-up course. Participants need to have a working knowledge of the basics of statistical data analysis, including parameter estimation and statistical tests.

Preparation:

Students should have a basic knowledge of either C++ or python programming languages. There will be opportunity during the course to develop programming skills through applications of data analysis.

Form of Testing and Examination:

The examination can be done either through a written exam or by written term papers as communicated at the beginning of the course.

Length of Course:

1 semester

Aims of the Course:

This course teaches advanced techniques of statistical data analysis. Its goal is to enable the participants to contribute to state of the art data analysis projects, for example during their master thesis, and to enable them to conduct their own research into statistical data analysis methods.

Contents of the Course:

Parametric likelihood fits, constraint optimisation, state space models, non-parametric density estimation, unfolding, model validation, introduction to machine learning, classification, adaptive basis function models, ensemble learning, deep generative models

Examples from high energy and hadronic physics.

Recommended Literature:

Elements of statistical learning, 2nd Edition, Hastie, Tibshirani & Friedman, Springer 2017 Data Analysis in High Energy Physics, Behnke et Al., Wiley-VCH 2013 Statistical Analysis Techniques in Particle Physics, Narsky & Porter, Wiley-VCH 2013 Machine Learning, A Probabilistic Perspective, Murphy, MIT Press 2012

14 July 2020

Physics

physics70b Elective Advanced Lectures: Applied Physics

Course: universitätboni

Scientific Programming with Python (E/A)

Course No.: physics725

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1	6	ST

Requirements for Participation:

Preparation:

Prior knowledge of any programming language (C/C++, Java, Python, ...)

Form of Testing and Examination:

Successful implementation of scientific projects in Python during the semester

Length of Course:

1 semester

Aims of the Course:

Effective and flexible program solving with the easy-to-learn, high-level programming language Python. The course addresses master and PhD students with prior programming knowledge as taught in the bachelor course physics131.

Contents of the Course:

In-depth introduction to the Python programming language; Introduction to numpy arrays (primary Python data structure for scientific computing); Introduction to scientific-Python modules (scipy, astropy); Interactive work / development with Python (ipython); Web interaction with Python (jupyter notebooks, web and database queries);

Plotting with Python (the matplotlib module), Introduction to writing own scientific Python-modules and Object-oriented programming, Collaborative code development and version control (git, github)

Recommended Literature:

All necessary materials are made available online via the eCampus platform

Credit points can only be earned from one exam out of physics718 and physics725

Module: Elective Advanced Lectures:

Experimental Physics

Module No.: physics70a

Course: universitätboni

Intensive Week: Advanced Topics in Photonics and Quantum Optics (E)

Course No.: physics737

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Combined lecture, seminar, lab	English	2	3	WT/ST
	course				

Requirements for Participation:

Preparation:

Fundamentals of optics, fundamentals of quantum mechanics

Form of Testing and Examination:

Seminar or oral examination

Length of Course:

1 - 2 weeks

Aims of the Course:

The intensive course will convey the basics of a recent topic in photonics or quantum optics in theory and experiments. Guided by a combination of lectures, seminar talks (based on original publications) and practical training, the participants will gain insight into recent developments in photonics/quantum optics.

Contents of the Course:

Will be given in the bulletin of lectures. The main theme will vary from term to term

Recommended Literature:

Will be given in the lecture

Module: Elective Advanced Lectures:

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Lecture on Advanced Topics in Quantum Optics (E)

Course No.: physics738

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1	4	WT/ST

Requirements for Participation:

Preparation:

Fundamentals of Quantum Mechanics, Atomic Physics

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work within the exercises

Length of Course:

1 semester

Aims of the Course:

The goal of the course is to introduce the students to a special field of research in quantum optics. New research results will be presented and their relevance is discussed.

Contents of the Course:

Will be given in the bulletin of lectures. The main theme will vary from term to term

Recommended Literature:

Will be given in the lecture

Physics

physics70b Elective Advanced Lectures: Applied Physics

Course: universitätbonn

Lecture on Advanced Topics in Photonics (E/A)

Course No.: physics739

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1	4	WT/ST

Requirements for Participation:

Preparation:

Optics

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work within the exercises

Length of Course:

1 semester

Aims of the Course:

The goal of the course is to introduce the students to a special field of research in photonics. New research results will be presented and their relevance is discussed.

Contents of the Course:

Will be given in the bulletin of lectures. The main theme will vary from term to term

Recommended Literature:

Will be given in the lecture

This course may be offered as "Teaching hours (3+1)" with 6 cp, as well

18 April 2011

Physics

physics70b Elective Advanced Lectures: Applied Physics

Course:

Hands-on Seminar: Experimental Optics and Atomic Physics (E/A)

Course No.: physics740

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Laboratory	English	2	3	WT/ST

Requirements for Participation:

Preparation:

Fundamentals of optics and quantum mechanics

Form of Testing and Examination:

Credit points can be obtained after successful carrying out the experiments and preparing a written report on selected experiments

Length of Course:

1 semester

Aims of the Course:

The students learn to handle optical setups and carry out optical experiments. This will prepare participants both for the successful completion of research projects in experimental quantum optics/photonics and tasks in the optics industry.

Contents of the Course:

Practical training in the field of optics, where the students start their experiment basically from scratch (i.e. an empty optical table). The training involves the following topics:

19

- diode lasers
- optical resonators
- acousto-optic modulators
- spectroscopy
- radiofrequency techniques

Recommended Literature:

Will be given by the supervisor

Physics

physics70c Elective Advanced Lectures: Theoretical

Physics

Course: universitätbonn

Ultracold Atomic Gases (E/T)

Course No.: physics742

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+1	6	WT

Requirements for Participation:

Preparation:

Quantum Mechanics

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

This lecture discusses both the experimental and theoretical concepts of ultra-cold atomic gases.

Contents of the Course:

Almost hundred years ago, in 1924, A. Einstein and S.N. Bose predicted the existence of a new state of matter, the so-called Bose-Einstein condensate. It took 70 years to successfully realize this macroscopic quantum state in the lab using ultracold atomic gases (Nobel prize 2001). The main challenge was to achieve cooling to Nanokelvin temperatures, the coolest temperatures ever reached by mankind. Nowadays, ultracold gases are exciting systems to study a broad range of quantum phenomena. These phenomena range from the direct observation of quantum matter waves and superfluidity over the creation of artificial crystal structures as analogous to solids, to the realization of complex quantum phase transitions of interacting atoms, e.g. the formation of a bosonic Mott-insulator or the BCS superconducting state for Fermions. In this lecture we will discuss both the experimental and theoretical concepts of ultra-cold atomic gases.

Outline: Introduction and revision of basic concepts, Fundamentals of atom-laser interaction Laser cooling & trapping, Bose-Einstein condensation of atomic gases. Dynamics of Bose-Einstein condensates

Optical lattices: strongly interacting atomic gases and quantum phase transitions
The crossover of Fermi-gases between a BCS superconducting state and a Bose-Einstein condensate of molecules.

Recommended Literature:

C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press)

20 August 2016

Module: Elective Advanced Lectures:

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Platforms for Quantum Technologies (E)

Course No.: physics743

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	1 week fulltime	3	WT/ST

Requirements for Participation:

Preparation:

Major courses of the 1st MSc term, for example, "Advanced Atomic, Molecular and Optical Physics", "Quantum Optics", "Advanced Quantum Theory", "Theoretical Condensed Matter Physics"

Form of Testing and Examination:

Homework Sheets

Length of Course:

1 week

Aims of the Course:

Students receive an introduction into quantum technologies both theoretically and experimentally. Focus is on the theoretical foundations of quantum information processing, and experimental platforms primarily used in Bonn (Atomic, molecular and optical systems), Cologne (topological materials) and Aachen (spin & superconducting architectures) in the context of the Excellence Cluster ML4Q.

21

Contents of the Course:

- 1. Basics of quantum information processing
- 2. Atomic, molecular and optical platforms, quantum simulation
- 3. Solid-state platforms. Focus on quantum computation. Spin qubits, superconducting qubits;
- 4. Topological platforms, Topological materials, Topological architectures

Recommended Literature:

Nielsen & Chuang "Quantum information processing" Pethick/Smith "Bose-Einstein condensation" Lecture notes will be distributed for selected topics

May 2023

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Precision Metrology (E)

Course No.: physics744

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1	4	WT/ST

Requirements for Participation:

Preparation:

Fundamentals of Quantum Mechanics, Atomic Physics

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work within the exercises

Length of Course:

1 semester

Aims of the Course:

The aim of the course is to give the students a deeper insight to the field of precision metrology. Building on prior knowledge from the Bachelor courses it will cover topics from the field of sensing and metrology. The course will focus on work related to atomic physics and laser spectroscopy.

Contents of the Course:

Introduction to precision measurements: the system of SI units, systematic and statistical errors, precision and accuracy, error budgets, Allan deviation; the hydrogen atom and test of QED, including muonic hydrogen; atomic clocks: RF clocks, optical clocks (lattice clocks, ion clocks, nuclear clocks; matter wave interferometry; entanglement and squeezing; search for physics beyond the standard model in atomic physics: isotope shift spectroscopy, drifts in fundamental constants and dark matter, Lorentz violation, parity violation; ring laser gyroscopes for rotation sensing; technology: lasers, frequency combs, resonators. Possible topics outside of atomic physics include tests of special relativity and gravitational wave detection.

Recommended Literature:

Will be given in the lecture

Experimental Physics

Module No.: physics70a

Course: universitätbonn

Advanced Topics in Condensed Matter Physics (E)

Course No.: physics745

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1	4	WT/ST

Requirements for Participation:

Preparation:

Fundamentals of Quantum Mechanics, Solid State Physics. Participation in physics613 is recommended.

Form of Testing and Examination:

Requirements for the submodule examination (written or oral examination): successful work within the exercises

Length of Course:

1 semester

Aims of the Course:

The aim of the course is to give the students a deeper insight to novel developments in the field of experimental condensed matter physics. Building on prior knowledge from the Bachelor courses, experimental techniques will be explained, new research results will be presented and their relevance is discussed.

Contents of the Course:

Will be given in the bulletin of lectures. The main theme will vary from term to term, the topics will supplement the content of the specialization lectures physics613 and physics617.

Recommended Literature:

Will be given in the lecture

23 October 2025

Modules: physics70a Elective Advanced Lectures: Experimental

Physics

physics70b Elective Advanced Lectures: Applied Physics

physics70c Elective Advanced Lectures: Theoretical

Physics

Course: universitätbonr

Research Project

Course No.: physics799

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Research Project	English		4	WT/ST

Requirements for Participation:

Students are asked to contact one of the BCGS lecturers prior to the start of their research project. Lecturers provide help if needed to find a suitable research group and topic. Not all groups may have projects available at all times, thus participation may be limited.

Preparation:

A specialization lecture from the research field in question or equivalent preparation.

Form of Testing and Examination:

A written report or, alternatively, a presentation in a meeting of the research group.

Length of Course:

4-6 weeks

Aims of the Course:

Students conduct their own small research project as a part-time member of one of the research groups in Bonn. The students learn methods of scientific research and apply them to their project.

Contents of the Course:

One of the following possible items:

- setting up a small experiment,
- analyzing data from an existing experiment,
- simulating experimental situations,
- numerical or analytical calculations in a theory group.

Recommended Literature:

provided by the supervisor within the research group.

registration by written application to the examination office (see homepage)

February 2019