

Module No.: physics70b
Credit Points (CP): 3-6
Category: Elective
Semester: 1.-2.

Module: Elective Advanced Lectures: Applied Physics

Module Elements:

Nr.	Course Title	Number	CP	Type	Workload	Sem.
1.	Selected courses from catalogue type "A" (Applied) or "E/A" (Experimental/A)	see catalogue	3-6	see catalogue	90-180 hrs	ST/WT
2.	Also possible classes from M.Sc. in Astrophysics					

Requirements for Participation:

none

Form of Examination:

see with the course

Content:

Advanced lectures in applied physics

Aims/Skills:

Preparation for Master's Thesis work; broadening of scientific knowledge

Course achievement/Criteria for awarding cp's:

see with the course

Length of Module:

1 or 2 semester

Maximum Number of Participants:

ca. 100

Registration Procedure:

s. <https://basis.uni-bonn.de> u. <http://bamawww.physik.uni-bonn.de>

Note: The student must achieve at least 18 CP out of all 4 Elective Advanced Modules

Modules:

physics70a **Elective Advanced Lectures: Experimental Physics**
physics70b **Elective Advanced Lectures: Applied Physics**

Course:

Advanced Electronics and Signal Processing (E/A)

Course No.: physics712

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	3+1	6	ST

Requirements for Participation:**Preparation:**

Electronics laboratory of the B.Sc. in physics programme

Recommended: module nuclear and particle physics of the B.Sc. programme

Form of Testing and Examination:

Requirements for the examination (written): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Comprehension of the basics of electronics circuits for the processing of (detector) signals, mediation of the basics of experimental techniques regarding electronics and micro electronics as well as signal processing

Contents of the Course:

The physics of electronic devices, junctions, transistors (BJT and FET), standard analog and digital circuits, amplifiers, elements of CMOS technologies, signal processing, ADC, DAC, noise sources and noise filtering, coupling of electronics to sensors/detectors, elements of chip design, VLSI electronics, readout techniques for detectors

Recommended Literature:

P. Horowitz, W. Hill; The Art of Electronics (Cambridge University Press 2. Aufl. 1989)

S. Sze; The Physics of Semiconductor Devices (Wiley & Sons 1981)

H. Spieler, Semiconductor detector system (Oxford University Press 2005))

J. Krenz; Electronics Concepts (Cambridge University Press 2000)

Modules:physics70a **Elective Advanced Lectures: Experimental Physics**physics70b **Elective Advanced Lectures: Applied Physics****Course:****Particle Detectors and
Instrumentation (E/A)**

Course No.: physics713

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with laboratory	English	3+1	6	ST

Requirements for Participation:**Preparation:**

Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Designing an experiment in photoproduction on pi-0, selection and building of appropriate detectors, set-up and implementation of an experiment at ELSA

Contents of the Course:

Quark structure of mesons and baryons, nucleon excitation; electromagnetic probes, electron accelerators, photon beams, relativistic kinematics interaction of radiation with matter, detectors for photons, leptons and hadrons; laboratory course: setup of detectors and experiment at ELSA

Recommended Literature:B. Povh, K. Rith, C. Scholz, F. Zetsche; *Teilchen und Kerne* (Springer, Heidelberg 6. Aufl. 2004)Perkins; *Introduction to High Energy Physics* (Cambridge University Press 4. Aufl. 2000)W. R. Leo; *Techniques for Nuclear and Particle Detection* (Springer, Heidelberg 2. Ed. 1994)K. Kleinknecht; *Detektoren für Teilchenstrahlung* (Teubner, Wiesbaden 4. überarb. Aufl. 2005)

Modules:

physics70a **Elective Advanced Lectures: Experimental Physics**
 physics70b **Elective Advanced Lectures: Applied Physics**

Course:

Advanced Accelerator Physics (E/A)

Course No.: physics714

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	3+1	6	ST/WT

Requirements for Participation:**Preparation:**

Accelerator Physics (physics612)

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding of the physics of synchrotron radiation and its influence on beam parameters

Basic knowledge of collective phenomena in particle accelerators

General knowledge of applications of particle accelerators (research, medicine, energy management)

Contents of the Course:

Synchrotron radiation:

radiation power, spatial distribution, spectrum, damping, equilibrium beam emittance, beam lifetime

Space-charge effects:

self-field and wall effects, beam-beam effects, space charge dominated beam transport, neutralization of beams by ionization of the residual gas

Collective phenomena:

wake fields, wake functions and coupling impedances, spectra of a stationary and oscillating bunches, bunch interaction with an impedance, Robinson instability

Applications of particle accelerators:

medical accelerators, neutrino facilities, free electron lasers, nuclear waste transmutation, etc.

Recommended Literature:

F. Hinterberger; Physik der Teilchenbeschleuniger und Ionenoptik (Springer, Heidelberg 1997)

H. Wiedemann; Particle Accelerator Physics (Springer, Heidelberg 2 Aufl. 1999)

K. Wille; Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen (Teubner, Wiesbaden 2. Aufl. 1996)

D. A. Edwards, M.J. Syphers; An Introduction to the Physics of High Energy Accelerators (Wiley & Sons 1993)

A. Chao; Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley & Sons 1993)

Script of the Lecture Particle Accelerators (physics612)

<http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/>

Modules:physics70a **Elective Advanced Lectures: Experimental Physics**physics70b **Elective Advanced Lectures: Applied Physics****Course:****Scientific Programming with Python (E/A)****Course No.:** physics725

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	2+1	6	ST

Requirements for Participation:**Preparation:**

Prior knowledge of any programming language (C/C++, Java, Python, ...)

Form of Testing and Examination:

Successful implementation of scientific projects in Python during the semester

Length of Course:

1 semester

Aims of the Course:

Effective and flexible program solving with the easy-to-learn, high-level programming language Python. The course addresses master and PhD students with prior programming knowledge as taught in the bachelor course physics131.

Contents of the Course:

In-depth introduction to the Python programming language; Introduction to numpy arrays (primary Python data structure for scientific computing); Introduction to scientific-Python modules (scipy, astropy); Interactive work / development with Python (ipython); Web interaction with Python (jupyter notebooks, web and database queries); Plotting with Python (the matplotlib module), Introduction to writing own scientific Python-modules and Object-oriented programming, Collaborative code development and version control (git, github)

Recommended Literature:

All necessary materials are made available online via the eCampus platform

Credit points can only be earned from one exam out of physics718 and physics725

Modules:physics70a **Elective Advanced Lectures: Experimental Physics**physics70b **Elective Advanced Lectures: Applied Physics****Course:**

Programming in Physics and Astronomy with C++ or Python (E/A)

Course No.: physics718

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	2+1	4	ST

Requirements for Participation:**Preparation:**

Basic knowledge of programming and knowledge of simple C/C++ or Python constructs.

Form of Testing and Examination:

C/C++ part: Requirements for the examination (written or oral): successful work with the exercises.

Python part: Requirements for examination: successful implementation of the scientific projects in Python during the semester.

Length of Course:

1 semester

Aims of the Course:

C++ part: In-depth understanding of C++ and its applications in particle physics. Discussion of advanced features of C++ using examples from High Energy Physics. The course is intended for students with some background in C++ or for advanced students who wish to apply C++ in their graduate research.

Python part: Effective and flexible program solving with the easy-to-learn, high level programming language Python. The course addresses master and PhD students with prior Python-programming knowledge as taught in the bachelor course physics131.

Contents of the Course:

C++ part: - Basic ingredients of C++, - Object orientation: classes, inheritance, polymorphism, - How to solve physics problems with C++, - Standard Template Library, - C++ in data analysis, example: the ROOT library, - C++ and large scale calculations, - How to write and maintain complex programs, - Parallel computing and the Grid, - Debugging and profiling

Python part: - In-depth introduction to Python based on prior programming experience, - Introduction to numpy arrays (primary Python data structure for scientific computing), - Introduction to scientific-Python modules (scipy, astropy), - Interactive work / development with Python (ipython), - Web interaction with Python (jupyter notebooks, web and database queries), - Plotting with Python (the matplotlib module)

Recommended Literature:

Eckel: Thinking in C++, Prentice Hall 2000.

Lippman, Lajoie, Moo: C++ Primer, Addison-Wesley 2000.

Deitel and Deitel, C++ how to program, Prentice Hall 2007.

Stroustrup, The C++ Programming Language, Addison-Wesley 2000.

- The course is given in the summer term and alternates between C++ and Python
- The course can only be taken once for credit points.

Modules:

physics70a **Elective Advanced Lectures: Experimental Physics**
physics70b **Elective Advanced Lectures: Applied Physics**

Course:

Hands-on Seminar: Detector Construction (E/A)

Course No.: physics723

Category	Type	Language	Teaching hours	CP	Semester
Elective	Laboratory	English	2	3	WT/ST

Requirements for Participation:

Basic knowledge of particle physics

Preparation:

physics618 is helpful but not mandatory

Form of Testing and Examination:

Credit points can be obtained after successful construction and operation of the detector and preparing a written and/or oral report on a specific task

Length of Course:

1 semester

Aims of the Course:

Students will design, construct, assemble and operate a particle detector.

Contents of the Course:

Students will construct, assemble and commission a particle detector. They will gain hands-on experience on detector construction. The students organize and execute the tasks of the project in personal responsibility. This includes many tasks common to more complex research or industrial projects. Topics include:

- order the needed detector components
- prepare CAD drawings
- prepare PCB layout
- develop electronic circuits
- produce and assemble detector parts
- vacuum technology
- cooling technology
- organize the work effort in personal responsibility
- communicate with team members and technical staff

Recommended Literature:

H. Kolanoski, N. Wermes, *Teilchendetektoren*, (Springer, Heidelberg, 2016)

W. R. Leo; *Techniques for Nuclear and Particle Detection* (Springer, Heidelberg 2. Ed. 1994)

K. Kleinknecht; *Detektoren für Teilchenstrahlung* (Teubner, Wiesbaden 4. überarb. Aufl. 2005)

Modules:physics70a **Elective Advanced Lectures: Experimental Physics**physics70b **Elective Advanced Lectures: Applied Physics****Course:**

Lecture on Advanced Topics in Photonics (E/A)

Course No.: physics739

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	2+1	4	WT/ST

Requirements for Participation:**Preparation:**

Optics

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work within the exercises

Length of Course:

1 semester

Aims of the Course:

The goal of the course is to introduce the students to a special field of research in photonics. New research results will be presented and their relevance is discussed.

Contents of the Course:

Will be given in the bulletin of lectures. The main theme will vary from term to term

Recommended Literature:

Will be given in the lecture

This course may be offered as "Teaching hours (3+1)" with 6 cp, as well

Modules:

physics70a **Elective Advanced Lectures: Experimental Physics**
physics70b **Elective Advanced Lectures: Applied Physics**

Course:**Hands-on Seminar: Experimental Optics and Atomic Physics (E/A)****Course No.:** physics740

Category	Type	Language	Teaching hours	CP	Semester
Elective	Laboratory	English	2	3	WT/ST

Requirements for Participation:**Preparation:**

Fundamentals of optics and quantum mechanics

Form of Testing and Examination:

Credit points can be obtained after successful carrying out the experiments and preparing a written report on selected experiments

Length of Course:

1 semester

Aims of the Course:

The students learn to handle optical setups and carry out optical experiments. This will prepare participants both for the successful completion of research projects in experimental quantum optics/photonics and tasks in the optics industry.

Contents of the Course:

Practical training in the field of optics, where the students start their experiment basically from scratch (i.e. an empty optical table). The training involves the following topics:

- diode lasers
- optical resonators
- acousto-optic modulators
- spectroscopy
- radiofrequency techniques

Recommended Literature:

Will be given by the supervisor

Module:**Elective Advanced Lectures:
Applied Physics****Module No.:** physics70b**Course:****Environmental Physics & Energy
Physics (A)****Course No.:** physics771

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture	English	2	3	WT

Requirements for Participation:**Preparation:**

Physik I-V (physik110-physik510)

Form of Testing and Examination:

Active contributions during term and written examination

Length of Course:

1 semester

Aims of the Course:

A deeper understanding of energy & environmental facts and problems from physics (and, if needed, nature or agricultural science) point of view

Contents of the Course:

After introduction into related laws of nature and after a review of supply and use of various resources like energy a detailed description on each field of use, use-improvement strategies and constraints and consequences for environment and/or human health & welfare are given.

Recommended Literature:

Diekmann, B., Heinloth, K.: Physikalische Grundlagen der Energieerzeugung, Teubner 1997

Hensing, I., Pfaffenberger, W., Ströbele, W.: Energiewirtschaft, Oldenbourg 1998

Fricke, J., Borst, W., Energie, Oldenbourg 1986

Bobin, J. L., Huffer, E., Nifenecker, H., L'Energie de Demain, EDP Sciences 2005

Thorndyke, W., Energy and Environment, Addison Wesley 1976

Schönwiese, C. D., Diekmann, B., Der Treibhauseffekt, DVA 1986

Boeker, E., von Grondelle, R., Physik und Umwelt, Vieweg, 1997

Module:**Elective Advanced Lectures:
Applied Physics****Module No.:** physics70b**Course:****Physics in Medicine:
Fundamentals of Analyzing
Biomedical Signals (A)****Course No.:** physics772

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	3+1	6	WT

Requirements for Participation:**Preparation:**

Elementary thermodynamics; principles of quantum mechanics, principles of condensed matter

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding of the principles of physics and the analysis of complex systems

Contents of the Course:

Introduction to the theory of nonlinear dynamical systems; selected phenomena (e.g. noise-induced transition, stochastic resonance, self-organized criticality); Nonlinear time series analysis: state-space reconstruction, dimensions, Lyapunov exponents, entropies, determinism, synchronization, interdependencies, surrogate concepts, measuring non-stationarity.

Applications: nonlinear analysis of biomedical time series (EEG, MEG, EKG)

Recommended Literature:

Lehnertz: Skriptum zur Vorlesung

E. Ott; Chaos in dynamical systems (Cambridge University Press 2. Aufl. 2002)

H. Kantz, T. Schreiber ; Nonlinear time series analysis. (Cambridge University Press 2:Aufl. 2004).

A. Pikovsky, M. Rosenblum, J. Kurths; Synchronization: a universal concept in nonlinear sciences (Cambridge University Press 2003)

Module:**Elective Advanced Lectures:
Applied Physics****Module No.:** physics70b**Course:****Physics in Medicine:
Fundamentals of Medical Imaging
(A)****Course No.:** physics773

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	3+1	6	ST

Requirements for Participation:**Preparation:**

Lectures Experimental Physics I-III (physik111-physik311) respectively

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding of the principles of physics of modern imaging techniques in medicine

Contents of the Course:

Introduction to physical imaging methods and medical imaging; Physical fundamentals of transmission computer tomography (Röntgen-CT), positron emission computer tomography (PET), magnetic resonance imaging (MRI) and functional MRI detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect; applications: analysis of structure and function.
Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging; Basics of neuroelectromagnetic activity, source models
instrumentation, detectors, SQUIDs; signal analysis, source imaging, inverse problems, applications

Recommended Literature:

K. Lehnertz: Scriptum zur Vorlesung

S. Webb; The Physics of Medical Imaging (Adam Hilger, Bristol 1988)

O. Dössel; Bildgebende Verfahren in der Medizin (Springer, Heidelberg 2000)

W. Buckel; Supraleitung (Wiley-VCH Weinheim 6. Aufl. 2004)

E. Niedermeyer/F. H. Lopes da Silva; Electroencephalography (Urban & Schwarzenberg, 1982)

Module:**Elective Advanced Lectures:
Applied Physics****Module No.:** physics70b**Course:****Electronics for Physicists (E/A)****Course No.:** physics774

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	3+1	6	ST

Requirements for Participation:**Preparation:**

Electronics laboratory of the B.Sc. in physics programme

Form of Testing and Examination:

Requirements for the examination (written): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Comprehension of electronic components, methods to derive the dynamical performance of circuits and mediation that these methods are widely used in various fields of physics

Contents of the Course:

Basics of electrical engineering, RF-electronics I: Telegraph equation, impedance matching for lumped circuits and electromagnetic fields, diodes, transistors, analogue and digital integrated circuits, system analysis via laplace transformation, basic circuits, circuit synthesis, closed loop circuits, oscillators, filters, RF-electronics II: low-noise oscillators and amplifiers

Recommended Literature:

P. Horowitz, W. Hill; The Art of Electronics (Cambridge University Press)

Murray R. Spiegel; Laplace Transformation (McGraw-Hill Book Company)

A.J. Baden Fuller; Mikrowellen (Vieweg)

Lutz v. Wangenheim; Aktive Filter (Hüthig)

Module:**Elective Advanced Lectures:
Applied Physics****Module No.:** physics70b**Course:****Nuclear Reactor Physics (A)****Course No.:** physics775

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture	English	2	3	ST

Requirements for Participation:**Preparation:**

Fundamental nuclear physics

Form of Testing and Examination:

Written or oral examination

Length of Course:

1 semester

Aims of the Course:

Deeper understanding of nuclear power generation (fission and fusion)

Contents of the Course:

Physics of nuclear fission and fusion, neutron flux in reactors, different reactor types, safety aspects, nuclear waste problem, future aspects and

Excursion to a nuclear power plant

Recommended Literature:

H. Hübel: Reaktorphysik (Vorlesungsskript, available during the lecture)

M. Borlein: Kerntechnik, Vogel (2009)

W. M. Stacey: Nuclear Reactor Physics, Wiley & Sons (2007)

Module:**Elective Advanced Lectures:
Applied Physics****Module No.:** physics70b**Course:****Physics in Medicine:
Physics of Magnetic Resonance
Imaging (A)****Course No.:** physics776

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	3+1	6	WT

Requirements for Participation:**Preparation:**

Lectures Experimental Physics I-III (physik111-physik311) respectively

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding the principles of Magnetic Resonance Imaging Physics

Contents of the Course:

- Theory and origin of nuclear magnetic resonance (QM and semiclassical approach)
- Spin dynamics, T1 and T2 relaxation, Bloch Equations and the Signal Equation
- Gradient echoes and spin echoes and the difference between T2 and T2*
- On- and off-resonant excitation and the slice selection process
- Spatial encoding by means of gradient fields and the k-space formalism
- Basic imaging sequences and their basic contrasts, basic imaging artifacts
- Hardware components of an MRI scanner, accelerated imaging with multiple receiver
- Computation of signal amplitudes in steady state sequences
- The ultra-fast imaging sequence EPI and its application in functional MRI
- Basics theory of diffusion MRI and its application in neuroimaging
- Advanced topics: quantitative MRI, spectroscopic imaging, X-nuclei MRI

Recommended Literature:

- T. Stöcker: Scriptum zur Vorlesung
- E.M. Haacke et al, Magnetic Resonance Imaging: Physical Principles and Sequence Design, John Wiley 1999
- M.T. Vlaardingerbroek, J.A. den Boer, Magnetic Resonance Imaging: Theory and Practice, Springer, 20
- Z.P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective, SPIE 1999

Module:**Elective Advanced Lectures:
Applied Physics****Module No.:** physics70b**Course:****Physics in Medicine:
Cardiovascular Magnetic
Resonance Imaging (CMRI) (A)****Course No.:** physics777

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture with exercises	English	3+1	6	ST

Requirements for Participation:**Preparation:**

Lectures Experimental Physics I-III (physik111-physik311) respectively

Form of Testing and Examination:

Requirements for the examination (written or oral): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding the principles of physics of Cardiovascular Magnetic Resonance Imaging (CMRI)

Contents of the Course:

1. Basic principles of MRI I (Bloch equation, spatial encoding)
2. Basic principles of MRI II (extended Bloch equation)
3. k-space trajectories and reconstruction techniques (Cartesian data: Fast Fourier transform (FFT); Non Cartesian: Nonuniform fast Fourier transform (NUFFT), REGRIDDING, BACK PROJECTION)
4. Basic principles of CMRI (physiology, motion correction, gating strategies)
5. Preclinical MRI systems at high magnetic fields (7T and above) – hardware, advantages and limitations
6. Magnetic resonance contrast agents (from a biophysical point of view, hands-on at MRI)
7. Myocardial relaxometry (T1, T2, T2* mapping, Extracellular Volume mapping, hands-on at MRI)
8. Magnetic resonance angiography (contrast enhanced MR angiography, navigator-based MR angiography)
9. CMRI of moving spins (blood flow velocity: phase contrast MRI, 4D velocity vector fields, velocity-time curves, vorticity, helicity, streamlining, pathfinding, hands-on at MRI)
10. Myocardial perfusion imaging (contrast-enhanced imaging techniques, Arterial Spin Labeling)
11. Myocardial architecture imaging (Diffusion-weighted magnetic resonance imaging (DWI), Diffusion tensor imaging (DTI), quantitative analysis, hands-on at MRI)
12. Myocardial MR Spectroscopy (Point Resolved Spectroscopy (PRESS), Stimulated Echo Acquisition Mode (STEAM), Chemical Shift Imaging (CSI), 31P-Image-Selected In vivo Spectroscopy (ISIS))
13. Novel approaches in metabolic MRI of the heart (Chemical exchange saturation transfer (CEST), Magnetization transfer contrast (MTC), comparison to 1H-MR Spectroscopy, quantitative analysis)
14. Concepts of acceleration in cardiac MRI at preclinical systems (Compressed Sensing (CS), Total Variation (TV), Parallel Imaging)

Recommended Literature:

1. V. Hörr: Scriptum zur Vorlesung

2. MRI: The Basics, Ray H. Hasbani, William G. Bradley, Christopher J. Lisanti, Lippincott Williams & Wilkins.
3. In Vivo NMR Spectroscopy, Robin de Graaf, John Wiley & Sons.
4. Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms, Bhabesh Deka, Sumit Datta, Springer.
5. Magnetic Resonance Imaging: Physical Principles and Sequence Design, Robert W. Brown, Yu-Chung N. Cheng, E. Mark Haacke, Michael R. Thompson, Ramesh Venkatesan, John Wiley & Sons.
6. Cardiovascular Magnetic Resonance, Warren J. Manning, Dudley J. Pennell, Elsevier.

Module:**Elective Advanced Lectures:
Applied Physics****Module No.:** physics70b**Course:****"Energy Production" (A)****Course No.:** physics778

Category	Type	Language	Teaching hours	CP	Semester
Elective	Lecture	English	2	3	WT/ST

Requirements for Participation:**Preparation:**

Physik I-V (physik110-physik510)

Form of Testing and Examination:

Written or oral examination

Length of Course:

1 semester

Aims of the Course:

The course intends to provide an overview in the field of today's challenges in "energy production" from a physics point of view.

Contents of the Course:

Energy storage & transport

Nuclear power

- Solar (photovoltaics, thermal, wind, water)
- Geothermal
- Reactors (fission / fusion)

Moon power (tidal power plants)

Recommended Literature:

Will be given during the course

Modules:

physics70a **Elective Advanced Lectures: Experimental Physics**
physics70b **Elective Advanced Lectures: Applied Physics**
physics70c **Elective Advanced Lectures: Theoretical Physics**

Course: **Research Project**

Course No.: physics799

Category	Type	Language	Teaching hours	CP	Semester
Elective	Research Project	English		4	WT/ST

Requirements for Participation:

Students are asked to contact one of the BCGS lecturers prior to the start of their research project. Lecturers provide help if needed to find a suitable research group and topic. Not all groups may have projects available at all times, thus participation may be limited.

Preparation:

A specialization lecture from the research field in question or equivalent preparation.

Form of Testing and Examination:

A written report or, alternatively, a presentation in a meeting of the research group.

Length of Course:

4-6 weeks

Aims of the Course:

Students conduct their own small research project as a part-time member of one of the research groups in Bonn. The students learn methods of scientific research and apply them to their project.

Contents of the Course:

One of the following possible items:

- setting up a small experiment,
- analyzing data from an existing experiment,
- simulating experimental situations,
- numerical or analytical calculations in a theory group.

Recommended Literature:

provided by the supervisor within the research group.

registration by written application to the examination office (see homepage)