

Module:**Elective Advanced Lectures:
Theoretical Physics****Module No.:** physics70c**Course:****Lattice Field Theory - Hamiltonian
and Lagrangian Methods (T)****Course No.:** physics7520

Category	Type	Language	Teaching hours	CP	Semester
Elective	Mixed lecture and seminar	English	2+2	5	WT/ST

Requirements for Participation:**Preparation:**

Theoretical courses at the Bachelor degree level

Form of Testing and Examination:

Written / oral examination

Length of Course:

1 semester

Aims of the Course:

To provide an introduction to the fundamentals of lattice field theory and to explore modern approaches for addressing the sign problem.

Contents of the Course:

- Fundamentals of lattice field theory
- The sign problem: chemical potentials, topological terms, and real-time evolution
- Lagrangian methods: Lefshetz thimbles and machine-learning-sampling for lattice field theory
- Hamiltonian methods: tensor networks and quantum algorithms for lattice field theory

Recommended Literature:

Gattringer, Lang, "Quantum chromodynamics on the lattice", Springer, Berlin (2010)

Aarts, "Introductory lectures on lattice QCD at nonzero baryon number", XIII International Workshop on Hadron Physics (2015), arXiv:1512.05145