Modul-Nr.:physik320Leistungspunkte:9Kategorie:PflichtSemester:3.

Modul: Theoretische Physik II (Elektrodynamik)

Modulbestandteile:

Nr.	LV Titel	LV Nr	LP	LV-Art	Aufwand	Sem.
1.	Theoretische Physik II	physik321	9	Vorl. + Üb.	270 Std.	WS
	(Elektrodynamik)					

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Mathematik I - II für Physiker (math140, math240)

Theoretische Physik I (physik220)

Physik I - II (physik110, physik210)

Inhalt:

Maxwellgleichungen, Elektro- und Magnetostatik, retardierte Potentiale, Strahlung und Wellen, Elektrodynamik in Medien

Lernziele/Kompetenzen:

Umgang mit Konzepten und Rechenmethoden der Klassischen Elektrodynamik und der Speziellen Relativitätstheorie.

Prüfungsmodalitäten:

Zulassungsvoraussetzung zur Modulprüfung (Klausur): erfolgreiche Teilnahme an den Übungen

Dauer des Moduls: 1 Semester

Max. Teilnehmerzahl: ca. 200

Anmeldeformalitäten:

s. https://basis.uni-bonn.de u. http://bamawww.physik.uni-bonn.de

Studiengang:

Modul: Theoretische Physik II

(Elektrodynamik)

Modul-Nr.: physik320

Lehrveranstaltung: Theoretische Physik II (Elektrodynamik)

LV-Nr.: physik321

Kategorie	LV-Art	Sprache	sws	LP	Semester
Pflicht	Vorlesung mit Übungen	deutsch	4+3	9	WS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Mathematik I - II für Physiker (math140, math240)

Theoretische Physik I (physik220)

Physik I - II (physik110, physik210)

Studien- und Prüfungsmodalitäten:

Zulassungsvoraussetzung zur Modulprüfung (Klausur): erfolgreiche Teilnahme an den Übungen

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Umgang mit Konzepten und Rechenmethoden der Klassischen Elektrodynamik und der Speziellen Relativitätstheorie

Inhalte der LV:

Maxwellgleichungen

Elektro- und Magnetostatik, Poisson- und Laplace-Gleichung, Kugelflächenfunktionen

Elektromagnetische Wellen

spezielle Relativitätstheorie

bewegte Ladungen, retardierte Potentiale

Strahlung, Hertzscher Dipol

kovariante Elektrodynamik

Elektrodynamik in Medien

Literaturhinweise:

T. Fließbach; Lehrbuch der Theoretischen Physik 2: Elektrodynamik (Spektrum Akademischer Verlag, Heidelberg 4. Aufl. 2004)

J. Jackson; Klassische Elektrodynamik (de Gruyter, Berlin 4. überarb. Aufl. 2006)

L. Landau, E. Lifschitz; Lehrbuch der Theoretischen Physik Band 2: Klassische Feldtheorie (Harri Deutsch, Frankfurt am Main 12. überarb. Aufl. 1991)

1

J.S. Schwinger, L.L. Deraad, K.A. Milton, W.Y. Tsai; Classical Electrodynamics (Perseus Books 1998)