Module-Handbook
Master in Astrophysics
PO von 2014

SS 2020
We don’t offer each of these modules regularly.

For any update please see:

http://www.physik-astro.uni-bonn.de/teaching-de
Master of Astrophysics

Rheinische Friedrich-Wilhelms-Universität Bonn

(valid from WS 2014/2015)

Course Phase

<table>
<thead>
<tr>
<th>Semester</th>
<th>Compulsory</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>astro608:</td>
<td>astro810/811:</td>
</tr>
<tr>
<td></td>
<td>Theoretical</td>
<td>Stars and</td>
</tr>
<tr>
<td></td>
<td>Astrophysics</td>
<td>Stellar</td>
</tr>
<tr>
<td></td>
<td>7 cp</td>
<td>Evolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 cp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>astro810/812:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 cp</td>
</tr>
<tr>
<td></td>
<td>physics601:</td>
<td>Elective Advanced</td>
</tr>
<tr>
<td></td>
<td>Advanced Laboratory</td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Course</td>
<td>(at least 18 cp out of astro84 and astro85)</td>
</tr>
<tr>
<td>2. Sem.</td>
<td>astro830:</td>
<td>astro820/821:</td>
</tr>
<tr>
<td>Apr</td>
<td>Seminar</td>
<td>Astrophysics of Galaxies</td>
</tr>
<tr>
<td>May</td>
<td>4 cp</td>
<td>6 cp</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>astro820/822:</td>
<td>Physics of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interstellar Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 cp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sem.</td>
<td>astro940:</td>
<td>astro950:</td>
</tr>
<tr>
<td>Oct</td>
<td>Scientific Exploration of the Master thesis topic</td>
<td>Methods and Project Planning</td>
</tr>
<tr>
<td>Nov</td>
<td>15 cp</td>
<td>15 cp</td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sem.</td>
<td>astro960:</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>Master Thesis</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents: M.Sc. in Astrophysics (PO von 2014)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>astro800</td>
<td>Introduction to Astrophysics</td>
<td>1</td>
</tr>
<tr>
<td>astro801</td>
<td>Introduction to Astrophysics</td>
<td>2</td>
</tr>
<tr>
<td>physics601</td>
<td>Advanced Laboratory Course</td>
<td>3</td>
</tr>
<tr>
<td>astro608</td>
<td>Theoretical Astrophysics</td>
<td>5</td>
</tr>
<tr>
<td>astro810</td>
<td>Compulsory Astrophysics I</td>
<td>7</td>
</tr>
<tr>
<td>astro820</td>
<td>Compulsory Astrophysics II</td>
<td>10</td>
</tr>
<tr>
<td>astro830</td>
<td>Seminar: Astrophysics</td>
<td>13</td>
</tr>
<tr>
<td>astro840</td>
<td>Elective Advanced Lectures: Observational Astronomy</td>
<td>14</td>
</tr>
<tr>
<td>astro841</td>
<td>Research Project</td>
<td>15</td>
</tr>
<tr>
<td>astro842</td>
<td>Submillimeter Astronomy</td>
<td>17</td>
</tr>
<tr>
<td>astro843</td>
<td>Astronomical Interferometry and Digital Image Processing</td>
<td>18</td>
</tr>
<tr>
<td>astro844</td>
<td>Observational Cosmology</td>
<td>19</td>
</tr>
<tr>
<td>astro846</td>
<td>Wave Optics and Astronomical Applications</td>
<td>20</td>
</tr>
<tr>
<td>astro847</td>
<td>Optical Observations</td>
<td>21</td>
</tr>
<tr>
<td>astro848</td>
<td>Galactic and Intergalactic Magnetic Fields</td>
<td>22</td>
</tr>
<tr>
<td>astro849</td>
<td>Multiwavelength Observations of Galaxy Clusters</td>
<td>23</td>
</tr>
<tr>
<td>astro850</td>
<td>Introduction to Hydro- and Magnetohydrodynamics</td>
<td>24</td>
</tr>
<tr>
<td>astro851</td>
<td>X-Ray Astronomy</td>
<td>25</td>
</tr>
<tr>
<td>astro852</td>
<td>Hydrodynamics and astrophysical magnetohydrodynamics</td>
<td>26</td>
</tr>
<tr>
<td>astro853</td>
<td>Radiointerferometry: Methods and Science</td>
<td>27</td>
</tr>
<tr>
<td>astro854</td>
<td>Active Galactic Nuclei (OA)</td>
<td>28</td>
</tr>
<tr>
<td>astro855</td>
<td>Methods of Experimental Astrophysics (OA)</td>
<td>29</td>
</tr>
<tr>
<td>astro856</td>
<td>The Fourier-Transform and its Applications (OA)</td>
<td>30</td>
</tr>
<tr>
<td>astro850</td>
<td>Elective Advanced Lectures: Modern Astrophysics</td>
<td>31</td>
</tr>
<tr>
<td>astro831</td>
<td>Research Project</td>
<td>32</td>
</tr>
<tr>
<td>astro852</td>
<td>Stellar and Solar Coronae</td>
<td>33</td>
</tr>
<tr>
<td>astro853</td>
<td>Gravitational Lensing</td>
<td>34</td>
</tr>
<tr>
<td>astro854</td>
<td>The Physics of Dense Stellar Systems as the Building Blocks of Galaxies</td>
<td>35</td>
</tr>
<tr>
<td>astro855</td>
<td>Numerical Dynamics</td>
<td>37</td>
</tr>
<tr>
<td>astro856</td>
<td>Quasars and Microquasars</td>
<td>38</td>
</tr>
<tr>
<td>astro857</td>
<td>Star Formation</td>
<td>39</td>
</tr>
<tr>
<td>astro858</td>
<td>Nucleosynthesis</td>
<td>40</td>
</tr>
<tr>
<td>astro859</td>
<td>The cosmic history of the intergalactic medium</td>
<td>41</td>
</tr>
<tr>
<td>astro860</td>
<td>Binary Stars</td>
<td>42</td>
</tr>
<tr>
<td>astro861</td>
<td>Physics of Supernovae and Gamma-Ray Bursts</td>
<td>43</td>
</tr>
<tr>
<td>astro862</td>
<td>Radio and X-Ray Observations of Dark Matter and Dark Energy</td>
<td>44</td>
</tr>
<tr>
<td>astro8604</td>
<td>Lecture on Advanced Topics in Modern Astrophysics</td>
<td>45</td>
</tr>
<tr>
<td>astro862</td>
<td>Astrophysics II (MA)</td>
<td>46</td>
</tr>
<tr>
<td>astro863</td>
<td>Star Formation (MA)</td>
<td>47</td>
</tr>
<tr>
<td>astro864</td>
<td>Galaxy Dynamics (MA)</td>
<td>48</td>
</tr>
<tr>
<td>astro940</td>
<td>Scientific Exploration of the Master Thesis Topic</td>
<td>49</td>
</tr>
</tbody>
</table>
Module: Introduction to Astrophysics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction to Astrophysics</td>
<td>astro801</td>
<td>4</td>
<td>Lect. + tut. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:

Content:
Introduction to Astrophysics to establish common standards at the start of the Masters programme

Aims/Skills:
The module brings the student up to the level required for the Master of Astrophysics programme. Students have to demonstrate adequate knowledge in astronomy at the introductory level and in advanced quantum theory.
Those who have demonstrated in the procedure for admission to the M.Sc. in Astrophysics programme to have one (or both) of these, are not required to take these courses

Course achievement/Criteria for awarding cp's:
Requirements for the premodule examination (written or oral examination): successful work with the exercises

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:
Candidates for this module examination are registered by the examination board

*This Module is compulsory for students who have not had any introduction to astrophysics in their Bachelor study course.
Module: Introduction to Astrophysics

Module No.: astro800

Course: Introduction to Astrophysics

Course No.: astro801

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required (see note on astro800)</td>
<td>Lecture with tutorial and exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the premodule examination (written or oral examination): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Students with B.Sc. in Physics lacking sufficient introductory astronomy knowledge will be brought up to the level required for the Master in Astrophysics programme. Students need to acquire allowance to take this course upon admission to the M.Sc. in Astrophysics programme

Contents of the Course:
Celestial mechanics; Stars: photometric and spectroscopic measurements; Stellar structure: atmosphere, interior, nuclear fusion; Stellar evolution; Variable and binary stars; Star clusters, Interstellar medium: ionized gas, neutral and molecular gas, hot matrix, star formation, measurements; Galactic structure: distribution and motion of stars, galactic rotation, mass components, galactic evolution; Galaxies: types, distance determination, clustering; Cosmology: big bang, nucleosynthesis, expansion, dark matter, dark energy. Lecture will be supplemented by a tutorial, with relevant textbooks

Recommended Literature:

Note: Participation will be decided by the Eligibility Assessment Board (student advisor for Astronomy), if the applicant exhibits lack of knowledge upon admission. Such students have to fulfill a total of 124 credit points of their master course.
Module: Advanced Laboratory Course

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Laboratory Course</td>
<td>physics601</td>
<td>7</td>
<td>Laboratory</td>
<td>210 hrs</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
written report for every laboratory

Content:
Every student has to complete this Laboratory Course. The course consists of advanced experiments introducing into important subfields of contemporary experimental physics and astrophysics. The lab-course is accompanied by a seminar.

Aims/Skills:
The students shall gain insight in the conceptual and complex properties of relevant contemporary experiments. The students gain experience in setting up an experiment, data logging and data analysis. They experience the intricacies of forefront experimental research

Course achievement/Criteria for awarding cp’s:
Before carrying out an experiment, the students shall demonstrate to have acquired the necessary preparatory knowledge. Experiments are selected from the catalogue of laboratory set-ups offered. Cumulative lab-units of >= 9 are required.
Requirements for the examination (written report for every laboratory): successful completion of the experiment and initial oral questioning plus seminar talk

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:
Requirements for Participation:

Requirement for experiment 12 is astro800 Introduction to Astrophysics or an equivalent basic knowledge in astrophysics.

Preparation:

Recommended for experiment 13 is lecture astro841 Radio Astronomy: Tools, Applications, Impacts.

Form of Testing and Examination:

Experiments are selected from the catalogue of laboratory set-ups offered. 9 cumulative lab-units (LU) are required. One of the experiments 1-3 is compulsory for physics students. The experiments 12-14 are compulsory for astrophysics students. Requirements for the module examination (written report for every laboratory): successful completion of the experiment and initial oral questioning.

Length of Course:

1 semester

Aims of the Course:

The student shall gain insight in the intricate workings of physics in relevant advanced experiments. The student gains experience in the setting up of a proper experimental environment and experiences the intricacies of forefront experimental research and presenting his/her results.

Contents of the Course:

Advanced experiments are carried out. Experimenting time in units of 8 hrs, preparation time and report writing each ~15 hrs. Further details are listed in the catalogue of laboratories. The experiments are chosen among those being offered and after consultation with the head of the course.

In the accompanying seminar the students report about one experiment. This experiment will be selected after consultation with the head of the course.

Recommended Literature:

Hand outs and literature will be distributed with the registration for an experiment.

Catalogue of laboratories: (subject to change, for an up to date catalogue see http://www.praktika.physik.uni-bonn.de/module/physics601)

1. Properties of Elementary Particles (Bubble Chamber events): 3 LU
2. Analysis of Decays of Heavy Vector Boson Z0: 3 LU
3. Atlas: 3 LU
4. Holography: 2 LU
5. Photovoltaic and Fuel Cell: 2 LU
6. Optical frequency doubling: 2 LU
7. Laser Spectroscopy: 2 LU
8. Photonic Crystals: 2 LU
9. Mößbauer-Effect: 1 LU
10. Nuclear Gamma-Gamma Angular Correlations: 1 LU
11. Beta+-Annihilation: 1 LU
12. Optical Astronomy: 3 LU
13. Wave propagation on coaxial cables and waveguides / Setup of a radio-astronomical receiver: 2 LU
14. Photometry of stars: 2 LU

Module: Advanced Laboratory Course
Module No.: physics601

Course: Advanced Laboratory Course
Course No.: physics601
Module: Theoretical Astrophysics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Theoretical Astrophysics</td>
<td>astro608</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
written examination

Content:
Introduction into Theoretical Astrophysics

Aims/Skills:
To provide the students with sound theoretical bases on a number of topics that have wide applications in astrophysics. They include general relativity, kinetic theory, plasma and fluid dynamics, stochastic and radiative processes, and radiative transfer.

Course achievement/Criteria for awarding cp’s:
successful work with exercises

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:
Module: Theoretical Astrophysics
Module No.: astro608

Course: Theoretical Astrophysics
Course No.: astro608

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Theoretical courses at the Bachelor degree level

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
The goal of this course is to provide the students with sound theoretical bases on a number of topics that have wide applications in astrophysics. They include general relativity, kinetic theory, plasma and fluid dynamics, stochastic and radiative processes, and radiative transfer.

Contents of the Course:
Introduction to General Relativity, Schwarzschild metric and gravitational waves.
Kinetic theory, Klimontovich equation, BBGKY hierarchy, Boltzmann and Vlasov equations, fluid limit, transport coefficients.
Basics of hydrodynamics, spherical flows, shock waves, Bondi accretion.
Random fields and stochastic processes, correlation and structure functions, power spectrum and multispctra, Langevin and Fokker-Planck equations.
Continuum radiation processes, synchrotron radiation, free-free radiation, Compton scattering.
Radiation from bound-free and bound-bound transitions.
Radiative transfer.

Recommended Literature:
Lecture notes
S. Carroll, Spacetime and Geometry (Addison Wesley 2004)
K. Huang, Statistical Physics (John Wiley & Sons 1987)
C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman 1973)
H. Risken, The Fokker-Planck Equation (Springer 1996)
G.R. Rybicky, A.P. Lightman; Radiative Processes in Astrophysics (John Wiley & Sons 1991)
Module: Compulsory Astrophysics I

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stars and Stellar Evolution</td>
<td>astro811</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
<tr>
<td></td>
<td>or specific: Stellar Structure and Evolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Cosmology</td>
<td>astro812</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
written examination

Content:
The module represents the fundamentals of the phases of stars and stellar evolution and the knowledge about our cosmological model

Aims/Skills:
The student shall acquire deeper understanding of the workings of stars and their evolution, in particular of important transitory phases of evolution, and shall be able to understand the origin of stars related with the location of their parameters in the HRD.
The student shall acquire deep understanding of the foundation of our world models and of their consequences, with special emphasis on the formation of structures in the universe and its physical and observational consequences

Course achievement/Criteria for awarding cp’s:
successful work with the exercises

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:
Module: Compulsory Astrophysics I

Module No.: astro810

Course: Stars and Stellar Evolution
or specific: Stellar Structure and Evolution

Course No.: astro811

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course: 1 semester

Aims of the Course:
Students will acquire sufficient knowledge to understand stars and their evolution. Study of radiation transport, energy production, nucleosynthesis and the various end phases of stellar evolution shall lead to appreciation for the effects these processes have on the structure and evolution of galaxies and of the universe

Contents of the Course:

Recommended Literature:
Lecture notes on "Stars and Stellar Evolution" (de Boer & Seggewiss)
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Compulsory Astrophysics I
Module No.: astro810

Course: Cosmology
Course No.: astro812

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Introductory astronomy

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
The student shall acquire deep understanding of the foundation of our world models and of their consequences, with special emphasis on the formation of structures in the universe and its physical and observational consequences. The lecture shall enable the student to read and understand original literature in astrophysical cosmology, but also to see the direct connection between the fundamental problems in cosmology and particle physics, such as the nature of dark matter and dark energy

Contents of the Course:
Kinematics and dynamics of cosmic expansion, introduction to General relativity, Friedmann equations and classification of world models, flatness and horizon problem; thermal history of the big bang, decoupling, WIMPS, nucleosynthesis, recombination and the CMB; gravitational light deflection, principles and applications of strong and weak gravitational lensing; structure formation in the Universe, perturbation theory, structure growth and transfer function, power spectrum of cosmic fluctuations, spherical collapse model, Press-Schechter theory and generalizations, cosmological simulations, cosmic velocity fields; principles of inflation; lensing by the large-scale structure, cosmic shear; anisotropies of the CMB, determination of cosmological parameters

Recommended Literature:
J. A. Peacock; Cosmological Physics (Cambridge University Press 1998)
P. J. E. Peebles; Principles of Physical Cosmology (Princeton University Press 1993)
Handout of the Transparencies
Module: Compulsory Astrophysics II

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Astrophysics of Galaxies</td>
<td>astro821</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>2.</td>
<td>Physics of the Interstellar Medium</td>
<td>astro822</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
written examination

Content:
This module presents both, theoretical aspects, as well as the detailed properties of the major building blocks of cosmic structure, viz. galaxies. The fundamentals of the physics of the interstellar medium are conveyed, along with the tools used to study its properties.

Aims/Skills:
The student shall acquire knowledge about the properties of galaxies, including their formation and their evolution, based on knowledge of the constituent matter (stars, gas, dark matter). The fundamentals of stellar dynamics are also conveyed. Physical processes relevant for the study of the interstellar medium have to be understood including the basic methods of measurements and their interpretation of the fundamental phases of the ISM.

Course achievement/Criteria for awarding cp’s:
successful work with the exercises

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Compulsory Astrophysics II
Module No.: astro820

Course: Astrophysics of Galaxies
Course No.: astro821

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
- Introductory astronomy as well as a good understanding of stars and their evolution as well as of the interstellar medium

Form of Testing and Examination:
- Requirements for the examination (written or oral): successful work with exercises

Length of Course:
- 1 semester

Aims of the Course:
The student shall acquire deep knowledge of the structure of the Milky Way and of other galaxies including their evolution. This must enable them to understand and evaluate new publications in the field. It should provide the student a quick entry into the research phase of the study programme

Contents of the Course:

Recommended Literature:
- J. Binney; B. Merrifield; Galactic Astronomy (Princeton University Press 1998)
- L. S. Sparke; J. S. Gallagher; Galaxies in the Universe (Cambridge University Press, 2000)

Write-up of the class
Module: Compulsory Astrophysics II
Module No.: astro820

Course: Physics of the Interstellar Medium
Course No.: astro822

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation: Introductory astronomy

Form of Testing and Examination: Requirements for the examination (written or oral): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: The student shall acquire a good understanding of the physics and of the phases of the ISM. The importance for star formation and the effects on the structure and evolution of galaxies is discussed.

Contents of the Course: Constitutens of the interstellar medium, physical processes, radiative transfer, recombination, HI 21cm line, absorption lines, Stroemgren spheres, HII regions, interstellar dust, molecular gas and clouds, shocks, photodissociation regions, energy balances, the multi-phase ISM, gravitational stability and star formation.

Recommended Literature:
B. Draine; The Physics of the Interstellar and Intergalactic Medium (Princeton Univ. Press 2010)
J. Lequeux; The Interstellar Medium (Springer 2005)
Module: Seminar: Astrophysics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Seminar on Modern Topics in Astrophysics</td>
<td>4</td>
<td></td>
<td>WT/ST</td>
<td>120 hrs</td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
Presentation

Content:
Modern developments in astrophysics are discussed using recent literature

Aims/Skills:
These seminars will introduce the student for the first time into professional research in astrophysics. Active participation will furnish the student with the skill to read and present modern research topics

Course achievement/Criteria for awarding cp’s:
regular participation and active contribution

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Useable for:

former astro890
Module: Elective Advanced Lectures: Observational Astronomy

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Selected 84* courses from catalogue</td>
<td>astro84*</td>
<td>3-6</td>
<td>see catalogue</td>
<td>90-120 hrs</td>
<td>WT/ST</td>
</tr>
<tr>
<td>2.</td>
<td>Astrophysics Courses from Cologne marked "OA"</td>
<td>see catalogue</td>
<td>4</td>
<td>see catalogue</td>
<td>120 hrs</td>
<td>WT/ST</td>
</tr>
<tr>
<td>3.</td>
<td>Also possible classes from M.Sc. in Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
written examination

Content:
This module covers all observational tools used in modern astronomy, over a wide range of the electromagnetic spectrum

Aims/Skills:
Observational astronomy shall be conveyed to the students by teaching the fundamentals of observational astronomical tools, along with relevant applications. These tools cover essentially the entire electro-magnetic spectrum, from radio wavelengths through X-ray energies. They naturally also encompass a wide range of astrophysical phenomena, including condensed matter (stars, neutron stars), the interstellar and intergalactic medium, galaxies and active galactic nuclei, and clusters of galaxies. Emphasis is also on observational cosmology

Course achievement/Criteria for awarding cp's:
see with the course

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

The students must obtain 18 CP in all out of the modules astro840 and astro850.
Degree: M.Sc. in Astrophysics (PO von 2014)

Modules:
- astro840 Elective Advanced Lectures: Observational Astronomy
- astro850 Elective Advanced Lectures: Modern Astrophysics

Course: Research Project

Course No.: astro831

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Research Project</td>
<td>English</td>
<td></td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Students are asked to contact one of the BCGS lecturers prior to the start of their project. Lecturers provide help if needed to find a suitable research group and topic. Not all groups may have projects available at all times, thus participation may be limited.

Preparation:
A specialization lecture from the research field in question or equivalent preparation.

Form of Testing and Examination:
A written report or, alternatively, a presentation in a meeting of the research group.

Length of Course:
4-6 weeks

Aims of the Course:
Students conduct their own small research project as a part-time member of one of the research groups in Bonn. The students learn methods of scientific research and apply them to their project.

Contents of the Course:
One of the following possible items:
- setting up a small experiment,
- analyzing data from an existing experiment,
- simulating experimental situations,
- numerical or analytical calculations in a theory group.

Recommended Literature:
provided by the supervisor within the research group.
Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Radio Astronomy: Tools, Applications, Impacts

Course No.: astro841

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Good knowledge of electrodynamics, atomic physics, and astronomy

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
An introduction to modern radio astronomy, its history, methods, and research potentials is given. The goals are to equip the student with the background and know-how to analyze and interpret data from modern single-dish and interferometer radio telescopes, and to enable them to motivate and write radioastronomical observing proposals. Aperture synthesis techniques are explained at some depth. The lecture is furnished with numerous examples demonstrating the versatility and power of radioastronomical tools

Contents of the Course:
Radiation: processes, propagation; Signal detection; Radio telescopes: properties, types; Receivers: heterodyne, bolometers; Backends: continuum, spectroscopy, pulsars; Interferometers: Fourier optics, aperture synthesis; imaging; Future: APEX, ALMA, LOFAR.

Recommended Literature:
J. D. Kraus; Radio Astronomy (Cygnus-Quasar Books, Durham 2. Aufl. 1986)
Lecture Notes (U. Klein)
Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Submillimeter Astronomy

Course No.: astro842

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic astronomy knowledge

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Students with B.Sc. in Physics will be introduced to astronomy in the submillimeter wavelength range, one of the last spectral regions to be explored with new high-altitude ground-based or airborne telescopes, and from space

Contents of the Course:
The basic concepts of emission/excitation mechanisms from interstellar dust and molecules are discussed as well as the properties of the observed objects: the dense interstellar medium, star forming regions, circumstellar environments. Star formation near and far is a central focus of submillimeter astronomy and will thus be introduced in depth. Telescopes, instrumentation, and observational techniques will be described in the course

Recommended Literature:
Contemporary review articles
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Astronomical Interferometry and Digital Image Processing

Course No.: astro843

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Students learn the basics required to carry out research projects in the field of wave optics and astronomical infrared interferometry

Contents of the Course:
Statistical optics; Wave optics; image detectors; resolution enhancement by digital deconvolution; interferometric imaging methods in optical astronomy; Theory of photon noise; iterative image reconstruction methods; astronomical applications

Recommended Literature:
Lecture Notes
Module: Elective Advanced Lectures: Observational Astronomy
Module No.: astro840

Course: Observational Cosmology
Course No.: astro845

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Students with B.Sc. in Physics will be introduced to past and current experiments in cosmology, with some bias toward radio- and submillimeter astronomy

Contents of the Course:
Brief history of cosmology and its initial discoveries: cosmic expansion, cosmic microwave background. Overview of modern cosmological experiments, their major aims and technology. Aims: constraints on Big Bang and dark energy, CMB power spectrum and polarization, Sunyaev-Zeldovitch effect, Supernova Ia distance measures, structure /cluster /galaxy formation, epoch of reionization, high-redshift galaxies and quasars. Experiments: APEX, LOFAR, Planck, Herschel, ALMA, SKA. Techniques: bolometer, HEMT

Recommended Literature:
J. A. Peacock; Cosmological Physics (Cambridge University Press 1998)
Contemporary Review Articles
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Wave Optics and Astronomical Applications

Course No.: astro846

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Acquire the fundamentals necessary to carry out research projects in the field of wave optics and astronomical infrared interferometry

Contents of the Course:
Fundamentals of wave optics; Fourier mathematics; digital image processing; Michelson interferometry; speckle interferometry; speckle holography; Knox-Thompson method; bispectrum-speckle interferometry; interferometric spectroscopy; infrared-long-baseline interferometry; optical phase-closure method; infrared interferometry of young stars and stars in late evolutionary stages and in nuclei of galaxies

Recommended Literature:
Lecture Notes
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Optical Observations

Course No.: astro847

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Astronomy introduction classes

Form of Testing and Examination:
Requirements for the examination (written or oral exam): successful work with exercises

Length of Course:
1 semester

Aims of the Course:
The students should get familiar with major aspects of optical astronomical observations, data reduction, and image analysis.

Contents of the Course:
Optical CCD and near infrared imaging, data reduction, catalogue handling, astrometry, coordinate systems, photometry, spectroscopy, photometric redshifts, basic weak lensing data analysis, current surveys, how to write observing proposals.
Practical experience is gained by obtaining and analysing multi-filter CCD imaging observations using the 50cm telescope on the AIfA rooftop, as well as the analysis of professional data from the archive.

Recommended Literature:
Provided upon registration
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Galactic and Intergalactic Magnetic Fields

Course No.: astro848

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Good knowledge of electrodynamics and astronomy

Form of Testing and Examination:
Requirements for examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
The students shall become familiar with relativistic plasmas in astrophysics. They shall comprehend the origin and significance of magnetic fields in diffuse astrophysical media. The potential role of magnetic fields in the evolution of the universe will be discussed. The detection and quantitative measurements of magnetic fields in the ISM and IGM shall be conveyed, along with a description of the current and future observational facilities.

Contents of the Course:
Introduction: magnetism, physical quantities, history, observational evidence; radiation processes: radiation transport, free-free radiation, synchrotron radiation, inverse-Compton radiation, propagation effects; diagnostics: optical polarisation, synchrotron radiation, Faraday rotation, Zeeman effect; radio continuum observations: total and polarised intensity, rotation measure, RM synthesis, telescopes; Milky Way: diffuse ISM, molecular clouds and star-forming regions, supernova remnants, diffusive shock acceleration, cosmic rays, origin and maintenance of magnetic fields, galactic dynamo; external galaxies: spiral galaxies, dwarf irregular galaxies, elliptical galaxies, origin of magnetic fields; active galactic nuclei: radio galaxies, quasars, Seyfert galaxies, origin of magnetic fields; intergalactic magnetic fields: clusters of galaxies, radio halos, radio relics, mini-halos, magnetisation of the IGM, cosmological shocks; cosmological magnetic fields

Recommended Literature:
Lecture Notes (U. Klein)
Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Multiwavelength Observations of Galaxy Clusters

Course No.: astro849

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Introductory Astronomy lectures

Form of Testing and Examination:
Written or oral examination, successful exercise work

Length of Course:
1 semester

Aims of the Course:
To introduce the students into the largest clearly defined structures in the Universe, clusters of galaxies. In modern astronomy, it has been realized that a full understanding of objects cannot be achieved by looking at just one waveband. Different phenomena become apparent only in certain wavebands, e.g., the most massive visible component of galaxy clusters - the intracluster gas - cannot be detected with optical telescopes. Moreover, some phenomena, e.g., radio outbursts from supermassive black holes, influence others like the X-ray emission from the intracluster gas. In this course, the students will acquire a synoptic, multiwavelength view of galaxy groups and galaxy clusters.

Contents of the Course:
The lecture covers galaxy cluster observations from all wavebands, radio through gamma-ray, and provides a comprehensive overview of the physical mechanisms at work. Specifically, the following topics will be covered: galaxies and their evolution, physics and chemistry of the hot intracluster gas, relativistic gas, and active supermassive black holes; cluster weighing methods, Sunyaev-Zeldovich effect, gravitational lensing, radio halos and relics, and the most energetic events in the Universe since the big bang: cluster mergers.

Recommended Literature:
Lecture script and references therein
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Introduction to Hydro- and Magnetohydrodynamics

Course No.: astro8401

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td></td>
<td>3 ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Revision of vectors and vector calculus, electromagnetism, basic thermodynamics

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
The students will become familiar with the basic laws of hydrodynamics and magnetohydrodynamics and will understand their universal applicability and importance in many varied contexts. As well as learning about the basic phenomena such as waves and compressible flow, several particular contexts (mainly in astrophysics and atmospheric physics) will be examined in detail using analytical tools which the students will then learn to apply in other, new situations and contexts. By doing this the students will develop abilities to tackle and interpret any hydrodynamical phenomenon they encounter.

Contents of the Course:
The fluid approximation, Euler equations, ideal fluids, viscous fluids, diffusion of heat, sound waves, hydrostatics, flow around an object, the Bernoulli equation, the Reynolds number and other dimensionless parameters used to describe a flow, compressible and incompressible flow, supersonic and subsonic flow, shock waves (with example: supernovae), surface gravity waves, internal gravity waves, waves in a rotating body of fluid (example: earth's atmosphere), stability analysis (examples: convection, salt fingers in ocean), the magnetohydrodynamics equations, Alfven waves, flux conservation, flux freezing, magnetic pressure and tension, force-free fields, reconnection (with example: solar corona), angular momentum transport and the magneto-rotational instability (example: astrophysical discs).

Recommended Literature:
E. Landau & E. Lifshitz, Fluid mechanics (Pergamon Press 1987)
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: X-Ray Astronomy

Course No.: astro8402

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Introductory astronomy lectures

Form of Testing and Examination:
Written or oral examination, successful exercise work

Length of Course:
1 semester

Aims of the Course:
The student shall be familiarized with X-ray observations as a powerful tool to study almost all astrophysical objects in ways not possible in other wavebands.

Contents of the Course:
History, space-based instruments, radiation processes, solar system objects, isolated compact objects, binaries with compact objects, supernova remnants, interstellar medium, Galactic center, normal galaxies, galaxy clusters, superclusters, intergalactic medium, active galactic nuclei.

Recommended Literature:
Lecture notes will be provided
Degree: M.Sc. in Astrophysics (PO von 2014)

Module:

<table>
<thead>
<tr>
<th>Elective Advanced Lectures:</th>
<th>Observational Astronomy</th>
</tr>
</thead>
</table>

Module No.: astro840

Course:

<table>
<thead>
<tr>
<th>Hydrodynamics and astrophysical magnetohydrodynamics</th>
</tr>
</thead>
</table>

Course No.: astro8403

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Revision of elementary thermodynamics, vector calculus and electromagnetism. Please note that although this course is designed mainly with astrophysics in mind, no knowledge of astrophysics is assumed. Students of other branches of physics are welcome.

Form of Testing and Examination:
Exercises throughout the semester, and an oral examination at the end of the course.

Length of Course:
1 semester

Aims of the Course:
Almost the entire universe is fluid and so an understanding of many phenomena is impossible without a proper grasp of fluid dynamics. This course introduces the field, drawing on examples from astrophysics as well as atmospheric physics to illustrate the principles. The aim is for the students to develop an intuitive understanding of underlying principles. Roughly the last quarter of the course is an introduction to magnetohydrodynamics; here the emphasis is on astrophysical applications (rather than laboratory/plasma physics).

Contents of the Course:
The fluid approximation, Euler equations, ideal fluids, viscous fluids, diffusion of heat, sound waves, hydrostatics, flow around a solid body, the Bernoulli equation, the Reynolds number and other dimensionless parameters used to describe a flow, compressible and incompressible flow, supersonic and subsonic flow, shocks (with example: supernovae), surface & internal gravity waves, vortices and vorticity, waves in a rotating body of fluid (example: earth's atmosphere), stability analysis (examples: convection, shear instability), the magnetohydrodynamics equations, Alfvén waves, flux conservation, flux freezing, magnetic pressure and tension, force-free fields, reconnection (with example: solar corona), angular momentum transport and the magneto-rotational instability (example: astrophysical discs).

Recommended Literature:
E. Landau & E. Lifshitz, "Fluid mechanics" Pergamon Press 1987
Lecture notes at http://www.astro.uni-bonn.de/~jonathan/misc/Hydro_astroMHD.pdf
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Radiointerferometry: Methods and Science

Course No.: astro8404

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+2</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Einführung in die Radioastronomie (astro123), Radio Astronomy (astro841)

Form of Testing and Examination:
Requirements for the examination (written or oral): Successful participation in the exercise sessions

Length of Course:
1 semester

Aims of the Course:
Basics of radiointerferometric observations and techniques; review of science highlights; use of common data analysis packages.

Contents of the Course:
Principles of interferometry, aperture synthesis, calibration, continuum and spectral line imaging, zero spacing, VLBI, use of AIPS and CASA, ALMA and VLA proposal writing, LOFAR and SKA, science highlights.

Recommended Literature:
"Synthesis Imaging in Radio Astronomy II" (ASP Conference Series, V. 180, 1998), Editors: Taylor, Carilli, Perley
Interferometry and Synthesis in Radio Astronomy (Wiley 2001), by Thompson, Moran, Swenson

On-line material
Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Active Galactic Nuclei (OA)

Course No.: astro840

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Astrophysics I (Astrophysics II recommended)

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of fundamental concepts and physical radiation mechanisms for active galactic nuclei like Seyfert-galaxies, QSOs, quasars, and violently variable objects.

Contents of the Course:
The lecture introduces to basic aspects of active galactic nuclei:
Types of sources HII-galaxies, LINERs, Seyfert I, Seyfert II, QSO I, QSO II, BLLac/OVV-sources
Structure of an active nucleus: Broad line region (BLR), Narrow line region (NLR) and extended narrow line region (ionization cone).
Forbidden and permitted line transitions as density and temperature probes
Continuum emission processes: free-free and synchrotron radiation
Radio galaxies, jets and lobes as well as super luminal motion in jets.

Recommended Literature:
Binney and Merrifield, Galactic Astronomy (Princeton University Press)
Binney and Tremaine, Galactic Dynamics (Princeton University Press)
Carroll and Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley)
Schneider, Einführung in die extragalaktische Astronomie & Kosmologie (Springer, Berlin)
Shu, The Physics of Astrophysics I & II (University Science Books, Mill Valley)
Unsöld and Baschek, Der neue Kosmos (Springer, Berlin)
Weigert and Wendker, Astronomie und Astrophysik (VCH Verlag)
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: Methods of Experimental Astrophysics (OA)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Elementary Physics (Bachelor level); Astrophysics I (and II)

Form of Testing and Examination:
Exercise and written test; or oral examination

Length of Course:
1 semester

Aims of the Course:
Gain insight into which type of instrumentation, based on which principles, is employed for particular astronomical and astrophysical applications; and learn about their practical and fundamental limitations in resolution and sensitivity

Contents of the Course:
- detection of radiation: direct and coherent detection
- Signal/Noise ratio: fundamental and practical limits
- principles of optical instruments: imaging
- principles of optical instruments: spectroscopy
- radio receivers: Local Oscillator, Mixer and Backend-Spectrometers
- calibration: theory and measurement startegies

Recommended Literature:
Rieke: Detection of Light
Kraus: Radioastronomy
Bracewell: The Fourier Transform and its Applications
Module: Elective Advanced Lectures: Observational Astronomy

Module No.: astro840

Course: The Fourier-Transform and its Applications (OA)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Elementary Physics (Bachelor level); Elementary QM

Form of Testing and Examination:
Exercise and written test; or oral examination

Length of Course:
1 semester

Aims of the Course:
Strengthen insight into how the mathematical principles of Fourier Theory as a common principle affect many areas of physics (optics: diffraction/interference; QM: Heisenberg principle; statistics of noise and drifts; data acquisition: sampling) and other applications (data compression, signal processing).

Contents of the Course:
- introduction to the principles of Fourier Transform mathematics
- Delta-function and more general distributions
- diffraction optics and interferometry
- uncertainty principle in QM as application of FT
- theory of noise, drifts and their statistics
- intro to wavelet analysis and data compression

Recommended Literature:
Bracewell: The Fourier Transform and its Applications
Module: Elective Advanced Lectures: Modern Astrophysics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Selected 85* courses from catalogue</td>
<td>astro85*</td>
<td>3-6</td>
<td>see catalogue</td>
<td>90-180 hrs</td>
<td>WT/ST</td>
</tr>
<tr>
<td>2.</td>
<td>Astrophysics Courses from Cologne marked "MA"</td>
<td>see catalogue</td>
<td>3-8</td>
<td>see catalogue</td>
<td>90-240 hrs</td>
<td>WT/ST</td>
</tr>
<tr>
<td>3.</td>
<td>Also possible classes from M.Sc. in Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
written examination

Content:
This module contains a number of lectures on various astrophysical phenomena, from stars to the largescale structure of the universe

Aims/Skills:
The student shall acquire deeper knowledge of a variety of astrophysical phenomena, from stars through large-scale structure to cosmological aspects. The physical mechanisms and mathematical tools required to understand these phenomena shall be conveyed, complementing what is being treated in the compulsory astrophysics courses

Course achievement/Criteria for awarding cp’s:
see with the course

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

The students must obtain 18 CP in all out of the modules astro840 and astro850.
Degree: M.Sc. in Astrophysics (PO von 2014)

Modules:
- astro840 Elective Advanced Lectures: Observational Astronomy
- astro850 Elective Advanced Lectures: Modern Astrophysics

Course: Research Project

Course No.: astro831

Category	Type	Language	Teaching hours	CP	Semester
Elective | Research Project | English | | 4 | WT/ST

Requirements for Participation:
Students are asked to contact one of the BCGS lecturers prior to the start of their project. Lecturers provide help if needed to find a suitable research group and topic. Not all groups may have projects available at all times, thus participation may be limited.

Preparation:
A specialization lecture from the research field in question or equivalent preparation.

Form of Testing and Examination:
A written report or, alternatively, a presentation in a meeting of the research group.

Length of Course:
4-6 weeks

Aims of the Course:
Students conduct their own small research project as a part-time member of one of the research groups in Bonn. The students learn methods of scientific research and apply them to their project.

Contents of the Course:
One of the following possible items:
- setting up a small experiment,
- analyzing data from an existing experiment,
- simulating experimental situations,
- numerical or analytical calculations in a theory group.

Recommended Literature:
provided by the supervisor within the research group.
Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Stellar and Solar Coronae

Course No.: astro851

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
The student shall gain thorough knowledge of activity phenomena exhibited by the sun and other stars

Contents of the Course:
Sunspots and solar corona; Solar cycle; The Dynamo theory; Emission mechanism; Coronal loops; Magnetic reconnection; Flares; Magnetic stellar activity; Mapping star-spots: Doppler imaging; Radio coronae

Recommended Literature:
Literature references will be provided during the course
Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Gravitational Lensing

Course No.: astro852

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
After learning the basics of gravitational lensing followed by the main applications of strong and weak lensing, the students will acquire knowledge about the theoretical and observational tools and methods, as well as about the current state of the art in lensing research. Strong emphasis lies on weak lensing as a primary tool to study the properties of the dark-matter distribution and the equation of state of dark energy

Contents of the Course:
The detection of the deflection of light in a gravitational field was not only one of the crucial tests of Einstein's Theory of General Relativity, but has become in the past two decades a highly valuable tool for astronomers and cosmologists. It is ideally suited for studying the mass distribution of distant objects, search for compact objects as a potential constituent of the Galactic dark matter, provide powerful (and cheap) 'natural telescopes' to take a deeper look into the distant Universe, to measure the mass distribution in clusters and on larger spatial scales, and to study the relation between luminous and dark matter in the Universe. Principles and methods are described in detail and the applications will be presented

Recommended Literature:
P. Schneider, J. Ehlers, E. F. Falco; Gravitational Lenses (Springer, Heidelberg 1992)
Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: The Physics of Dense Stellar Systems as the Building Blocks of Galaxies

Course No.: astro8531

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:
BSc in physics

Preparation:
Participation in the lecture course and in the exercise classes and reading

Form of Testing and Examination:
A final two hour written exam on the contents of the course

Length of Course:
1 semester

Aims of the Course:
The students are taught the fundamentals of collisional stellar dynamics and of the emergence of stellar populations from galactic building blocks

Contents of the Course:
Fundamentals of stellar dynamics: distribution functions, generating functions, collisionless Boltzmann equation, Jeans equations, Fokker-Planck equation, dynamical states, collisional dynamics and relaxation, formal differentiation between star clusters and galaxies, mass segregation, evaporation, ejection, star-cluster evolution, the form, variation and origin of the stellar initial mass function, stellar populations, their evolution and their properties, binary stars as energy sinks and sources, the distribution functions of binary stars and the evolution of these distribution functions, star-cluster birth, violent relaxation, birth of dwarf galaxies.

The lecture course covers a broad range of topics related to the emergence of stellar populations from their molecular cloud cores. It provides a Bonn-unique synthesis on the one hand side between observationally and theoretically derived distribution functions, which describe stellar populations, and on the other hand side the temporal evolution of these distribution functions, such that a comprehensive mathematical formulation of stellar populations in galaxies becomes possible with this knowledge.

Recommended Literature:
Lecture notes
The universality hypothesis: binary and stellar populations in star clusters and galaxies by Pavel Kroupa (2011, IAUS 270, p.141)
Degree: M.Sc. in Astrophysics (PO vom 2014)

Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Numerical Dynamics

Course No.: astro854

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written): successful work with exercises and programming tasks

Length of Course:
1 semester

Aims of the Course:
The students will have to familiarize themselves with the various numerical recipes to solve the coupled 2nd-order differential equations as well as with the limitations of these methods

Contents of the Course:

Recommended Literature:
Write-up of the class;
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Quasars and Microquasars

Course No.: astro856

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Preparation:
Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
The phenomenon of quasars and their energy production shall be studied from the smallest (stellar binaries) to the largest (active galactic nuclei) scales

Contents of the Course:
Microquasars and Quasars; X-ray binaries; Accretion; Neutron stars; Black holes; X-ray observations; Spectral states; Radio observations; Doppler boosting; Energy losses; Magneto-hydrodynamic production of jets; Gamma-ray observations; Review of Microquasars; Quasi periodic oscillations (QPO)

Recommended Literature:
Literature references will be provided during the course
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Star Formation

Course No.: astro857

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
An introduction to basic concepts, modern theories, and the current observational basis of star formation.

Contents of the Course:
The structure and evolution of the interstellar medium in relation to Star Formation: molecular excitation, interstellar chemistry; the star formation process: conditions, cloud collapse, protostellar evolution; low mass vs. massive star formation; related phenomena: jets and outflows, protostellar disks, shocks, photodissociation regions; the initial mass function, global star formation, starbursts, the star formation history of the Universe, the very first stars.

Recommended Literature:
Additional literature will be given during the course
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Modern Astrophysics
Module No.: astro850

Course: Nucleosynthesis
Course No.: astro858

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Introduction to Astronomy, Stars and Stellar Evolution

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Obtain an overview of the different nucleosynthesis processes in the universe, an understanding of how they work, and where they work.

Contents of the Course:
Basic: Thermonuclear reactions
Big Bang nucleosynthesis
Overview of stellar evolution
Hydrostatic Nucleosynthesis I: Hydrogen burning
Hydrostatic Nucleosynthesis II: Helium burning and beyond
Hydrostatic Nucleosynthesis III: The s-process
Hydrostatic Nucleosynthesis IV: s-process components
Explosive Nucleosynthesis I: Core-collapse supernovae
Explosive Nucleosynthesis II: r-process and p-process
Explosive Nucleosynthesis III: Thermonuclear supernovae
Cosmic ray nucleosynthesis
Chemical Evolution of galaxies

Recommended Literature:
Lecture script
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Modern Astrophysics
Module No.: astro850

Course: The cosmic history of the intergalactic medium
Course No.: astro859

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic atomic physics (hydrogen atom) and basic thermodynamics. No previous knowledge of astrophysics is required.

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
The aim of this course is to familiarize students with the physics of the intergalactic medium (the material that pervades the vast regions between galaxies) and with its significance for cosmology and the astrophysics of galaxies. Thanks to progress in observations, theoretical modeling, and computational power, our knowledge in this field is growing rapidly. The main questions driving current research will be discussed and new results introduced as they occur.

Contents of the Course:
Basic: Transport of continuum and line radiation, photo-ionizations and radiative recombinations, the cooling function, the expanding universe.

Advanced: Cosmic recombination, the dark ages, hydrogen and helium reionization, 21cm-probes of the dark ages and reionization, quasar absorption systems, the UV background, the warm-hot intergalactic medium, intracluster gas, Lyman-alpha fluorescence.

Recommended Literature:
The study of the intergalactic medium is a young subject. No textbook exists for this topic. Lecture notes will be distributed.
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Binary Stars

Course No.: astro8501

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Introductory astronomy and cosmology lectures, stars and stellar evolution

Form of Testing and Examination:
Written or oral examination, successful exercise work

Length of Course:
1 semester

Aims of the Course:
The course will provide the necessary understanding of the basic physics of binary stars, in particular orbits, mass-transfer, chemistry and the importance of binary stars and populations of binaries to modern astrophysics.

Contents of the Course:
Most stars are not alone, they orbit a companion in a binary star system. This course will address the evolution of such binary stars and their impact on the Universe. It will start by considering orbital dynamics and observations of binaries, followed by stellar interaction in the form of mass transfer by Roche-lobe overflow and wind mass transfer. The effect of duplicity on chemistry, rotation rates and orbital parameters will be studied with the emphasis on uniquely binary-star phenomena such as type Ia supernovae, thermonuclear novae and gamma-ray bursts. It will conclude with quantitative studies of populations of binary stars.

Recommended Literature:
Interacting Binary Stars - Pringle and Wade - CUP (Out of print but you can find cheap second-hand copies on www.amazon.com) ISBN 0-521-26608-4
Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Physics of Supernovae and Gamma-Ray Bursts

Course No.: astro8502

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Introductory astronomy and cosmology lectures

Form of Testing and Examination:
Written or oral examination, successful exercise work

Length of Course:
1 semester

Aims of the Course:
The student will learn basic physics on supernova and gamma-ray burst, and will have an overview on their applications to various fields of astrophysics.

Contents of the Course:
Basic physics on stellar hydrodynamics, radiation processes, and stellar death.
Type Ia supernova: observations and theory. Application to cosmology
Core collapse supernova: observations and theory
Gamma-ray bursts: observations and theory.
Implications for massive star population and star-formation history
Supernova nucleosynthesis and chemical evolution of galaxies
Explosions of the first generations of stars
Some related issues: supernova remnants, neutrinos, shock break-out, etc.

Recommended Literature:
Lecture notes with key references for each topic will be provided.
Module: Elective Advanced Lectures: Modern Astrophysics
Module No.: astro850

Course: Radio and X-Ray Observations of Dark Matter and Dark Energy
Course No.: astro8503

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td></td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Introductory astronomy and cosmology lectures

Form of Testing and Examination:
Written or oral examination, successful exercise work

Length of Course:
1 semester

Aims of the Course:
The student will learn how the phenomena of dark matter and dark energy are explored using radio and X-ray observations, from the largest down to galaxy scales.

Contents of the Course:
Introduction into the evolution of the Universe and the theoretical background of dark matter and dark energy tests, dark matter associated with galaxies, dark matter associated with galaxy clusters and superclusters, the cosmic microwave background (CMB), epoch of re-ionization, low-frequency radio astronomy, high-z supernovae, cosmic infrared background (CIB), precise distance measurements at cosmological distances, observational evidence for hierarchical structure formation, MOND vs. dark matter cosmology.

Recommended Literature:
Lecture notes will be provided
Degree: M.Sc. in Astrophysics (PO von 2014)

Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Lecture on Advanced Topics in Modern Astrophysics

Course No.: astro8504

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Theoretical courses at the Bachelor degree level

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
This course is to allow the students to have deeper insight into a specialised subject of astrophysics that is not covered in the astrophysics curriculum otherwise. The content of the course depends on the lecturer’s expertise and may vary from time to time.

Contents of the Course:
See detailed announcements ("kommentiertes Vorlesungsverzeichnis")

Recommended Literature:
Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Astrophysics II (MA)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+1</td>
<td></td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Astrophysics I

Form of Testing and Examination:
written test

Length of Course:
1 semester

Aims of the Course:
The student will gain the ability to apply fundamental concepts of physics to describe astrophysical phenomena and will obtain an overview of the experimental foundations of our knowledge about the cosmos. The courses will enable him to understand the fundamental principles of the universe and its history. The courses also give an introduction to topics of active research in astrophysics and thus prepares the students towards their own research activity within the master thesis.

Contents of the Course:
Based on the introductory course 'Astrophysics I' in the Bachelor program this course deepens the understanding in selected topical areas of relevance. These are:
- Interstellar medium: molecular clouds, HII regions, photon dominated regions, shock waves, radiation processes, radiative transfer, astrochemistry
- Star formation (low mass and high mass), planetary system formation
- Galaxies: galactic structure, morphology, dynamics, chemical evolution, nuclei of active galaxies
- Large scale structure of the universe: intergalactic distance ladder, galaxy clusters, dark matter, gravitational lenses, experimental cosmology

Recommended Literature:
- Binney and Merryfield, Galactic Astronomy (Princeton University Press)
- Binney and Tremaine, Galactic Dynamics (Princeton University Press)
- Carroll and Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley)
- Schneider, Einhrung in die extragalaktische Astronomie & Kosmologie (Springer, Berlin)
- Shu, The Physics of Astrophysics I & II (University Science Books, Mill Valley)
- Unsöld and Baschek, Der neue Kosmos (Springer, Berlin)
- Weigert and Wendker, Astronomie und Astrophysik (VCH Verlag)
Module: Elective Advanced Lectures:
Modern Astrophysics

Module No.: astro850

Course: Star Formation (MA)

Category	Type	Language	Teaching hours	CP	Semester
Elective | Lecture with exercises | English | 2 | 3 | WT

Requirements for Participation:

Preparation:
Astrophysics I (Astrophysics II recommended)

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of fundamental concepts of star formation in a variety of environments.

Contents of the Course:
The lecture introduces the basic aspects of Star Formation:

Recommended Literature:
Palla and Stahler, Formation of Stars (Wiley)
Carroll and Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley)
Shu, The Physics of Astrophysics I & II (University Science Books, Mill Valley)
Spitzer, Physical Processes in the Interstellar Medium (Wiley)
Unsöld and Baschek, Der neue Kosmos (Springer, Berlin)
Module: Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course: Galaxy Dynamics (MA)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Astrophysics I (Astrophysics II recommended)

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of fundamental concepts of stellar and galaxy dynamics.

Contents of the Course:
The lecture introduces to basic aspects of stellar and galaxy dynamics: Multiple stellar systems, dynamics of open and compact stellar clusters, elliptical, disk and barred spiral galaxies, gas kinematics, galaxy evolution in galaxy clusters, gravitational friction, violent relaxation, the Hubble fork, galaxy collisions and mergers, cosmological evolution of stellar systems.

Recommended Literature:
Binney and Merryfield, Galactic Astronomy (Princeton University Press)
Binney and Tremaine, Galactic Dynamics (Princeton University Press)
Carroll and Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley)
Schneider, Einführung in die extragalaktische Astronomie & Kosmologie (Springer, Berlin)
Weigert and Wendker, Astronomie und Astrophysik (VCH Verlag)
Module: Scientific Exploration of the Master Thesis Topic

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Scientific Exploration of the Master Thesis Topic</td>
<td>astro941</td>
<td>15</td>
<td></td>
<td>450 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Successful completion of 60 credit points from the first year of the Master phase, including the modules physics601, astro608, astro810, and astro820

Form of Examination:
Presentation

Content:
Under guidance of the supervisor of the Master Thesis topic, the student shall explore the science field, read the relevant recent literature, and perhaps participate in further specialised classes and in seminars. The student shall write an essay about the acquired knowledge, which may serve as the introduction part of the Master Thesis

Aims/Skills:
The student shall demonstrate to have understood the scientific question to be studied in the Master Thesis

Course achievement/Criteria for awarding cp’s:

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Useable for:
Masterstudiengang Astrophysik, Pflicht, Semester: 3
Module: Methods and Project Planning

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methods and Project Planning</td>
<td>astro951</td>
<td>15</td>
<td>450 hrs</td>
<td>WT/ST</td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:
Successful completion of 60 credit points from the first year of the Master phase, including the modules physics601, astro608, astro 810, and astro820

Form of Examination:
written proposal

Content:
Under guidance of the supervisor of the planned Master Thesis topic, the student shall acquire knowledge about the methods required to carry out the Master Thesis project. This may include the participation in specialised seminars or specialised classes for the Master programme. The student shall plan the steps needed to successfully complete the Master Thesis

Aims/Skills:
The student shall demonstrate to have understood the methods to be used in the Master Thesis research. The project plan has to be presented

Course achievement/Criteria for awarding cp’s:

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Useable for:
Masterstudiengang Astrophysik, Pflicht, Semester: 3
Degree: M.Sc. in Astrophysics (PO von 2014)

Module No.: astro960
Credit Points (CP): 30
Category: Required
Semester: 4.

Module: Master Thesis

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
</table>

Requirements for Participation:
Successful completion of 60 credit points from the first year of the Master phase, including the modules physics601, astro608, astro 810, and astro820

Form of Examination:
Master Thesis

Content:
Under guidance of the supervisor of the Master Thesis topic, the student shall carry out the research of the Master Thesis project

Aims/Skills:
The student shall identify and work out the science question to be tackled in the Master Thesis

Course achievement/Criteria for awarding cp’s:
oral presentation

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Useable for: Masterstudiengang Astrophysik, Pflicht, Semester: 4