Modules: physics700 Elective Advanced Lectures

physics730 Theoretical Physics

Course: universitätbon

Lattice QCD (T)

Course No.: physics769

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+2	7	ST/WT

Requirements:

Preparation:

Quantum Mechanics 1+2, Quantum Field Theory 1

Form of Testing and Examination:

Written / oral examination

Length of Course:

1 semester

Aims of the Course:

To give an introduction to the quantum field theory on the lattice

Contents of the Course:

- Introduction: Quantum mechanics on the lattice
- Numerical algorithms
- Spin systems on the lattice: The Ising model
- Scalar field theory on the lattice: Discretization; Perturbation theory; Continuum limit
- Gauge fields: Link variables; Plaquette action; Wilson loop and confinement
- Fermions on the lattice: Fermion doubling; Different formulations for lattice fermions; Axial anomaly; Chiral fermions
- Use of Effective Field Theory methods: Extrapolation in the quark masses; Resonances in a finite volume

Recommended Literature:

- J. Smit, Introduction to guantum fields on a lattice: A robust mate, Cambridge Lect. Notes Phys. (2002)
- I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge Monographs on Mathematical Physics, Cambridge University Press 1994
- C. Gattringer and Ch. Lang, Quantum Chromodynamics on the Lattice: An Introductory Presentation Series: Lecture Notes in Physics, Vol. 788
- H.J. Rothe, Lattice Gauge Theories: An Introduction, World Scientific, (2005)