Module-Handbook
Master in Physics
PO von 2014

SS 2020
We don’t offer each of these modules regularly.

For any update please see:

http://www.physik-astro.uni-bonn.de/teaching-de
Master of Physics
Rheinische Friedrich-Wilhelms-Universität Bonn
(valid from WS 2014/2015)

<table>
<thead>
<tr>
<th>Course Phase</th>
<th>Compulsory</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>physics601: Advanced Laboratory Course</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 cp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theoretical Physics (physics606 or - if done previously - 1 module out of physics751, physics754, physics755, physics760, physics7501)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 cp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialization (at least 24 cp out of physics61a, -61b, -61c and/or physics62a, -62b, -62c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 cp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective Advanced Lectures (at least 18 cp out of physics70a, -70b, -70c, -70d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 cp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar (1 seminar out of physics65a, -65b, -65c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 cp</td>
<td></td>
</tr>
<tr>
<td>2. Sem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>physics910: Scientific Exploration of the Master thesis topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 cp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>physics920: Methods and Project Planning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 cp</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>physics930: Master Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 cp</td>
<td></td>
</tr>
<tr>
<td>4. Sem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Research Phase
Table of Contents: M.Sc. in Physics (PO von 2014)

<table>
<thead>
<tr>
<th>Elective Courses Theoretical Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics601 Advanced Laboratory Course</td>
<td>1</td>
</tr>
<tr>
<td>physics751 Group Theory (T)</td>
<td>5</td>
</tr>
<tr>
<td>physics606 Advanced Quantum Theory</td>
<td>4</td>
</tr>
<tr>
<td>physics754 General Relativity and Cosmology (T)</td>
<td>6</td>
</tr>
<tr>
<td>physics760 Computational Physics (T)</td>
<td>8</td>
</tr>
<tr>
<td>physics7501 Advanced Quantum Field Theory (T)</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Courses Theoretical Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics611 Particle Physics</td>
<td>10</td>
</tr>
<tr>
<td>physics612 Accelerator Physics</td>
<td>12</td>
</tr>
<tr>
<td>physics618 Physics of Particle Detectors</td>
<td>13</td>
</tr>
<tr>
<td>physics613 Condensed Matter Physics</td>
<td>14</td>
</tr>
<tr>
<td>Condensed Matter Physics I</td>
<td>15</td>
</tr>
<tr>
<td>physics614 Laser Physics and Nonlinear Optics</td>
<td>16</td>
</tr>
<tr>
<td>physics620 Advanced Atomic, Molecular, and Optical Physics</td>
<td>17</td>
</tr>
<tr>
<td>Molecular Physics I</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specialization: Advanced Experimental Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics632 Physics of Hadrons</td>
<td>20</td>
</tr>
<tr>
<td>physics633 High Energy Collider Physics</td>
<td>21</td>
</tr>
<tr>
<td>physics639 Advanced Topics in High Energy Particle Physics</td>
<td>22</td>
</tr>
<tr>
<td>physics631 Quantum Optics</td>
<td>23</td>
</tr>
<tr>
<td>physics634 Magnetism/Superconductivity</td>
<td>24</td>
</tr>
<tr>
<td>physics640 Photonic Devices</td>
<td>25</td>
</tr>
<tr>
<td>Molecular Physics II</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specialization: Applied Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics635 Molecular Physics I</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specialization: Advanced Applied Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics616 Theoretical Hadron Physics</td>
<td>28</td>
</tr>
<tr>
<td>physics617 Theoretical Condensed Matter Physics</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theoretical Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics615 Theoretical Particle Physics</td>
<td>30</td>
</tr>
<tr>
<td>physics616 Theoretical Hadron Physics</td>
<td>31</td>
</tr>
<tr>
<td>physics617 Theoretical Condensed Matter Physics</td>
<td>32</td>
</tr>
<tr>
<td>Solid State Theory I</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advanced Theoretical Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics636 Advanced Theoretical Particle Physics</td>
<td>34</td>
</tr>
<tr>
<td>physics637 Advanced Theoretical Hadron Physics</td>
<td>35</td>
</tr>
<tr>
<td>physics638 Advanced Theoretical Condensed Matter Physics</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seminar: Experimental Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics711 Particle Astrophysics and Cosmology (E)</td>
<td>42</td>
</tr>
<tr>
<td>physics712 Advanced Electronics and Signal Processing (E/A)</td>
<td>43</td>
</tr>
<tr>
<td>physics713 Particle Detectors and Instrumentation (E/A)</td>
<td>44</td>
</tr>
<tr>
<td>physics714 Advanced Accelerator Physics (E/A)</td>
<td>45</td>
</tr>
<tr>
<td>physics715 Experiments on the Structure of Hadrons (E)</td>
<td>46</td>
</tr>
<tr>
<td>physics716 Statistical Methods of Data Analysis (E)</td>
<td>47</td>
</tr>
<tr>
<td>physics717 High Energy Physics Lab (E)</td>
<td>48</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>physics718</td>
<td>Programming in Physics and Astronomy with C++ or Python (E/A)</td>
</tr>
<tr>
<td>physics719</td>
<td>Intensive Week: Advanced Topics in High Energy Physics (E)</td>
</tr>
<tr>
<td>physics720</td>
<td>Physics with Antiprotons (E)</td>
</tr>
<tr>
<td>physics721</td>
<td>Intensive Week: Advanced Topics in Hadron Physics (E)</td>
</tr>
<tr>
<td>physics722</td>
<td>Advanced Gaseous Detectors - Theory and Practice (E)</td>
</tr>
<tr>
<td>physics723</td>
<td>Hands-on Seminar: Detector Construction (E/A)</td>
</tr>
<tr>
<td>physics731</td>
<td>Low Temperature Physics (E/A)</td>
</tr>
<tr>
<td>physics732</td>
<td>Optics Lab (E/A)</td>
</tr>
<tr>
<td>physics734</td>
<td>Holography (E/A)</td>
</tr>
<tr>
<td>physics735</td>
<td>Laser Cooling and Matter Waves (E)</td>
</tr>
<tr>
<td>physics736</td>
<td>Crystal Optics (E/A)</td>
</tr>
<tr>
<td>physics737</td>
<td>Intensive Week: Advanced Topics in Photonics and Quantum Optics (E)</td>
</tr>
<tr>
<td>physics738</td>
<td>Lecture on Advanced Topics in Quantum Optics (E)</td>
</tr>
<tr>
<td>physics739</td>
<td>Lecture on Advanced Topics in Photonics (E/A)</td>
</tr>
<tr>
<td>physics740</td>
<td>Hands-on Seminar: Experimental Optics and Atomic Physics (E/A)</td>
</tr>
<tr>
<td>physics741</td>
<td>Modern Spectroscopy (E/A)</td>
</tr>
<tr>
<td>physics742</td>
<td>Ultracold Atomic Gases (E/T)</td>
</tr>
<tr>
<td>physics743</td>
<td>Platforms for Quantum Technologies (E)</td>
</tr>
<tr>
<td>physics745</td>
<td>Research Project</td>
</tr>
<tr>
<td></td>
<td>Elective Advanced Lectures: Applied Physics</td>
</tr>
<tr>
<td>physics712</td>
<td>Advanced Electronics and Signal Processing (E/A)</td>
</tr>
<tr>
<td>physics713</td>
<td>Particle Detectors and Instrumentation (E/A)</td>
</tr>
<tr>
<td>physics714</td>
<td>Advanced Accelerator Physics (E/A)</td>
</tr>
<tr>
<td>physics718</td>
<td>Programming in Physics and Astronomy with C++ or Python (E/A)</td>
</tr>
<tr>
<td>physics723</td>
<td>Hands-on Seminar: Detector Construction (E/A)</td>
</tr>
<tr>
<td>physics731</td>
<td>Low Temperature Physics (E/A)</td>
</tr>
<tr>
<td>physics732</td>
<td>Optics Lab (E/A)</td>
</tr>
<tr>
<td>physics734</td>
<td>Holography (E/A)</td>
</tr>
<tr>
<td>physics736</td>
<td>Crystal Optics (E/A)</td>
</tr>
<tr>
<td>physics739</td>
<td>Lecture on Advanced Topics in Photonics (E/A)</td>
</tr>
<tr>
<td>physics740</td>
<td>Hands-on Seminar: Experimental Optics and Atomic Physics (E/A)</td>
</tr>
<tr>
<td>physics741</td>
<td>Modern Spectroscopy (E/A)</td>
</tr>
<tr>
<td>physics771</td>
<td>Environmental Physics & Energy Physics (A)</td>
</tr>
<tr>
<td>physics772</td>
<td>Physics in Medicine: Fundamentals of Analyzing Biomedical Signals (A)</td>
</tr>
<tr>
<td>physics773</td>
<td>Physics in Medicine: Fundamentals of Medical Imaging (A)</td>
</tr>
<tr>
<td>physics774</td>
<td>Electronics for Physicists (E/A)</td>
</tr>
<tr>
<td>physics775</td>
<td>Nuclear Reactor Physics (A)</td>
</tr>
<tr>
<td>physics776</td>
<td>Physics in Medicine: Physics of Magnetic Resonance Imaging (A)</td>
</tr>
<tr>
<td>physics799</td>
<td>Research Project</td>
</tr>
<tr>
<td></td>
<td>Elective Advanced Lectures: Theoretical Physics</td>
</tr>
<tr>
<td>physics742</td>
<td>Ultracold Atomic Gases (E/T)</td>
</tr>
<tr>
<td>physics751</td>
<td>Group Theory (T)</td>
</tr>
<tr>
<td>physics752</td>
<td>Superstring Theory (T)</td>
</tr>
<tr>
<td>physics753</td>
<td>Theoretical Particle Astrophysics (T)</td>
</tr>
<tr>
<td>physics754</td>
<td>General Relativity and Cosmology (T)</td>
</tr>
<tr>
<td>physics755</td>
<td>Quantum Field Theory (T)</td>
</tr>
<tr>
<td>physics756</td>
<td>Critical Phenomena (T)</td>
</tr>
<tr>
<td>physics757</td>
<td>Effective Field Theory (T)</td>
</tr>
<tr>
<td>physics758</td>
<td>Quantum Chromodynamics (T)</td>
</tr>
<tr>
<td>physics759</td>
<td>Quantum Field Theory for Condensed Matter Physics (T)</td>
</tr>
<tr>
<td>physics760</td>
<td>Computational Physics (T)</td>
</tr>
</tbody>
</table>
physics930 Master Thesis .. 107
physics920 Methods and Project Planning .. 108
physics910 Scientific Exploration of the Master Thesis Topic ... 109
physics799 Research Project ... 110

physics70d Elective Advanced Lectures: BCGS Courses .. 111
 Relativity and Cosmology I (T) .. 112
 Relativity and Cosmology II (T) .. 113
 Quantum Field Theory I (T) ... 114
 Quantum Field Theory II (T) .. 115
 Geometry in Physics (T) ... 116
 Topology for Physicists (T) .. 117
 Nuclear physics II (E) .. 118
 Physics of Detectors (E/A) .. 119
 Particle physics (E) .. 120
 Groundbreaking experiments in nuclear physics (E) ... 121
 Condensed Matter Physics II (E) .. 122
 Semiconductor Physics and Nanoscience (E/A) .. 123
 Superconductivity (E/A) .. 124
 Magnetism (E/A) .. 125
 Experimental methods in condensed matter physics (E/A) ... 126
 Physics of Surfaces and Nanostructures (E/A) .. 127
 Introduction to neutron scattering (E/A) .. 128
 Optical Spectroscopy (E/A) .. 129
 Astrochemistry (E/A) ... 130
 Fundamentals of Molecular Symmetry (E/A/T) ... 131
 Physical biology (T/A) ... 132
 Statistical physics of soft matter and biomolecules (T/A) .. 133
 Statistical physics far from equilibrium (T) .. 134
 Disordered systems (T) .. 135
 Nonequilibrium physics with interdisciplinary applications (T) .. 136
 Probability theory and stochastic processes for physicists (T) ... 137

physics910 Scientific Exploration of the Master Thesis Topic ... 138
physics920 Methods and Project Planning .. 139
physics930 Master Thesis .. 140
Module: Advanced Laboratory Course

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Laboratory Course</td>
<td>physics601</td>
<td>7</td>
<td>Laboratory</td>
<td>210 hrs</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
written report for every laboratory

Content:
Every student has to complete this Laboratory Course. The course consists of advanced experiments introducing into important subfields of contemporary experimental physics and astrophysics. The lab-course is accompanied by a seminar.

Aims/Skills:
The students shall gain insight in the conceptual and complex properties of relevant contemporary experiments. The students gain experience in setting up an experiment, data logging and data analysis. They experience the intricacies of forefront experimental research

Course achievement/Criteria for awarding cp’s:
Before carrying out an experiment, the students shall demonstrate to have acquired the necessary preparatory knowledge. Experiments are selected from the catalogue of laboratory set-ups offered. Cumulative lab-units of >= 9 are required.
Requirements for the examination (written report for every laboratory): successful completion of the experiment and initial oral questioning plus seminar talk

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:
Module: Advanced Laboratory Course

Module No.: physics601

Course: Advanced Laboratory Course

Course No.: physics601

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Laboratory</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Requirement for experiment 12 is astro800 Introduction to Astrophysics or an equivalent basic knowledge in astrophysics.

Preparation:
Recommended for experiment 13 is lecture astro841 Radio Astronomy: Tools, Applications, Impacts

Form of Testing and Examination:
Experiments are selected from the catalogue of laboratory set-ups offered. 9 cumulative lab-units (LU) are required. One of the experiments 1-3 is compulsory for physics students. The experiments 12-14 are compulsory for astrophysics students. Requirements for the module examination (written report for every laboratory): successful completion of the experiment and initial oral questioning

Length of Course:
1 semester

Aims of the Course:
The student shall gain insight in the intricate workings of physics in relevant advanced experiments. The student gains experience in the setting up of a proper experimental environment and experiences the intricacies of forefront experimental research and presenting his/her results.

Contents of the Course:
Advanced experiments are carried out. Experimenting time in units of 8 hrs, preparation time and report writing each ~15 hrs. Further details are listed in the catalogue of laboratories. The experiments are chosen among those being offered and after consultation with the head of the course.
In the accompanying seminar the students report about one experiment. This experiment will be selected after consultation with the head of the course.

Recommended Literature:
Hand outs and literature will be distributed with the registration for an experiment

Catalogue of laboratories: (subject to change, for an up to date catalogue see http://www.praktika.physik.uni-bonn.de/module/physics601)
1. Properties of Elementary Particles (Bubble Chamber events): 3 LU
2. Analysis of Decays of Heavy Vector Boson Z0: 3 LU
3. Atlas: 3 LU
4. Holography: 2 LU
5. Photovoltaic and Fuel Cell: 2 LU
6. Optical frequency doubling: 2 LU
7. Laser Spectroscopy: 2 LU
8. Photonic Crystals: 2 LU
9. Mößbauer-Effect: 1 LU
10. Nuclear Gamma-Gamma Angular Correlations: 1 LU
11. Beta+-Annihilation: 1 LU
12. Optical Astronomy: 3 LU
13. Wave propagation on coaxial cables and waveguides / Setup of a radio-astronomical receiver: 2 LU
14. Photometry of stars: 2 LU

August 2014
Module: Elective Courses Theoretical Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Advanced Quantum Theory</td>
<td>physics606</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>2.</td>
<td>Group Theory (T)</td>
<td>physics751</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>3.</td>
<td>General Relativity and Cosmology (T)</td>
<td>physics754</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>4.</td>
<td>Quantum Field Theory (T)</td>
<td>physics755</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>5.</td>
<td>Computational Physics (T)</td>
<td>physics760</td>
<td>7</td>
<td>Lect. + ex. +</td>
<td>210 hrs</td>
<td>WT/ST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>proj.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Advanced Quantum Field Theory (T)</td>
<td>physics7501</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:
for physics606: none
for all other modules: physics606

Form of Examination:
written examination

Content:
see with the course

Aims/Skills:
see with the course

Course achievement/Criteria for awarding cp’s:
successful work with the exercises

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

at least 7 cp out of this area must be achieved
Module: Elective Courses Theoretical Physics

Module No.: ECThPhysics

Course: Advanced Quantum Theory

Course No.: physics606

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Theoretical courses at the Bachelor degree level

Form of Testing and Examination:
Requirements for the module examination (written examination): successful work with exercises

Length of Course:
1 semester

Aims of the Course:
Ability to solve problems in relativistic quantum mechanics, scattering theory and many-particle theory

Contents of the Course:
Born approximation, partial waves, resonances
advanced scattering theory: S-matrix, Lippman-Schwinger equation
relativistic wave equations: Klein-Gordon equation, Dirac equation
representations of the Lorentz group
many body theory
second quantization
basics of quantum field theory
path integral formalism
Greens functions, propagator theory

Recommended Literature:
L. D. Landau, E.M. Lifschitz; Course of Theoretical Physics Vol.3 Quantum Mechanics (Butterworth-Heinemann 1997)
J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley 1995)
Modules:
ECThPhysics
Elective Courses Theoretical Physics
physics70c
Elective Advanced Lectures: Theoretical Physics

Course:

Group Theory (T)

Course No.:
physics751

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Preparation:
physik421 (Quantum Mechanics)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the

Length of Course:
1 semester

Aims of the Course:
Acquisition of mathematical foundations of group theory with regard to applications in theoretical physics

Contents of the Course:
Mathematical foundations:
Finite groups, Lie groups and Lie algebras, highest weight representations, classification of simple Lie algebras, Dynkin diagrams, tensor products and Young tableaux, spinors, Clifford algebras, Lie super algebras

Recommended Literature:
B. G. Wybourne; Classical Groups for Physicists (J. Wiley & Sons 1974)
H. Georgi; Lie Algebras in Particle Physics (Perseus Books 2. Aufl. 1999)
W. Fulton, J. Harris; Representation Theory (Springer, New York 1991)
Degree: M.Sc. in Physics (PO von 2014)

Modules:

- ECThPhysics
- Elective Courses Theoretical Physics
- physics70c
- Elective Advanced Lectures: Theoretical Physics

Course: General Relativity and Cosmology (T)

Course No.: physics754

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
physik221 and physik321 (Theoretical Physics I and II)
Differential geometry

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding the general theory of relativity and its cosmological implications

Contents of the Course:
Relativity principle
Gravitation in relativistic mechanics
Curvilinear coordinates
Curvature and energy-momentum tensor
Einstein-Hilbert action and the equations of the gravitational field
Black holes
Gravitational waves
Time evolution of the universe
Friedmann-Robertson-Walker solutions

Recommended Literature:
S. Weinberg; Gravitation and Cosmology (J. Wiley & Sons 1972)
L. D. Landau, E. M. Lifschitz; Course of Theoretical Physics Vol.2: Classical field theory (Butterworth-Heinemann 1995), also available in German from publisher Harry Deutsch
Course: Quantum Field Theory (T)

Course No.: physics755

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced quantum theory (physics606)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding quantum field theoretical methods, ability to compute processes in quantum electrodynamics (QED) and many particle systems

Contents of the Course:
Classical field theory
Quantization of free fields
Path integral formalism
Perturbation theory
Methods of regularization: Pauli-Villars, dimensional
Renormalizability
Computation of Feynman diagrams
Transition amplitudes in QED
Applications in many particle systems

Recommended Literature:
N. N. Bogoliubov, D.V. Shirkov; Introduction to the theory of quantized fields (J. Wiley & Sons 1959)
M. Kaku, Quantum Field Theory (Oxford University Press 1993)
M. E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Harper Collins Publ. 1995)
L. H. Ryder; Quantum Field Theory (Cambridge University Press 1996)
S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)
Modules:

ECThPhysics Elective Courses Theoretical Physics
physics70c Elective Advanced Lectures: Theoretical Physics

Course: Computational Physics (T)

Course No.: physics760

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises and project work</td>
<td>English</td>
<td>2+2+1</td>
<td>7</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Knowledge of a modern programming language (like C, C++)

Preparation:
Theoretical courses at the Bachelor degree level

Form of Testing and Examination:
successful participation in exercises,
presentation of an independently completed project

Length of Course:
1 semester

Aims of the Course:
ability to apply modern computational methods for solving physics problems

Contents of the Course:
Statistical Models, Likelihood, Bayesian and Bootstrap Methods
Random Variable Generation
Stochastic Processes
Monte-Carlo methods
Markov-Chain Monte-Carlo

Recommended Literature:
http://library.lanl.gov/numerical/index.html
Tao Pang: An Introduction to Computational Physics (Cambridge University Press)
Binder, Kurt and Heermann, Dieter W.: Monte Carlo Simulation in Statistical Physics (Springer)
Fehske, H.; Schneider, R.; Weisse, A.: Computational Many-Particle Physics (Springer)
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- ECThPhysics
- Elective Courses Theoretical Physics
- physics70c
- Elective Advanced Lectures: Theoretical Physics

Course: Advanced Quantum Field Theory (T)

Course No.: physics7501

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
3-year theoretical physics course with extended interest in theoretical physics and mathematics

Form of Testing and Examination:
Requirements for the module examination (written examination): successful work with exercises

Length of Course:
1 semester

Aims of the Course:
Introduction to modern methods and developments in Theoretical Physics in regard to current research

Contents of the Course:
Selected Topics in Modern Theoretical Physics for example:
- Anomalies
- Solitons and Instantons
- Quantum Fluids
- Bosonization
- Renormalization Group
- Bethe Ansatz
- Elementary Supersymmetry
- Gauge Theories and Differential Forms
- Applications of Group Theory

Recommended Literature:
- R. Rajaraman; Solitons and Instantons, An Introduction to Solitons and Instantons in Quantum Field Theory (North Holland Personal Library, Amsterdam 3rd reprint 2003)
Module: Specialization: Experimental Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Particle Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Particle Physics</td>
<td>physics611</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>2.</td>
<td>Accelerator Physics</td>
<td>physics612</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>3.</td>
<td>Physics of Particle Detectors</td>
<td>physics618</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
<tr>
<td></td>
<td>Condensed Matter and Photonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Condensed Matter Physics</td>
<td>physics613</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>2.</td>
<td>Condensed Matter Physics I</td>
<td>CondMatter I</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>3.</td>
<td>Laser Physics and Nonlinear Optics</td>
<td>physics614</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>4.</td>
<td>Advanced Atomic, Molecular, and Optical Physics</td>
<td>physics620</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>5.</td>
<td>Molecular Physics I</td>
<td>MolPhys I</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
see with the course

Content:
Fundamentals in experimental physics in Bonn or Cologne

Aims/Skills:
The students will get acquainted with modern research topics

Course achievement/Criteria for awarding cp’s:
see with the course

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 24 CP out of all 6 Specialization Modules
Module: Specialization: Experimental Physics

Module No.: physics61a

Course: Particle Physics

Course No.: physics611

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation: Introductory particle physics and quantum mechanics courses

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course: 1 semester

Aims of the Course:
Understanding of the fundamentals of particle physics: properties of quarks and leptons and their interactions (electromagnetic, weak, strong), experiments that have led to this understanding, the Standard Model of particle physics and measurements that test this model, the structure of hadrons

Contents of the Course:
Basics: leptons and quarks, antiparticles, hadrons, forces / interactions, Feynman graphs, relativistic kinematics, two-body decay, Mandelstam variables, cross-section, lifetime
Symmetries and Conservation Laws. Positronium, Quarkonium. Accelerators and Detectors
Electromagnetic interactions: (g-2) experiments, lepton-nucleon scattering

Recommended Literature:
F Halzen, A. Martin; Quarks and Leptons (J. Wiley, Weinheim 1. Aufl. 1984)
C. Berger; Elementarteilchenphysik (Springer, Heidelberg 2. überarb. Aufl. 2006)
D. Griffith; Introduction to Elementary Particle Physics (J. Wiley, Weinheim 1. Aufl. 1987)
A. Seiden; Particle Physics : A Comprehensive Introduction (2005)
Martin & Shaw; Particle Physics, Wiley (2nd edition, 1997)
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Experimental Physics

Module No.: physics61a

Course: Accelerator Physics

Course No.: physics612

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding of the functional principle of different types of particle accelerators
Layout and design of simple magneto-optic systems
Basic knowledge of radio frequency engineering and technology
Knowledge of linear beam dynamics in particle accelerators

Contents of the Course:
Elementary overview of different types of particle accelerators: electrostatic and induction accelerators, RFQ, Alvarez, LINAC, Cyclotron, Synchrotron, Microtron
Subsystems of particle accelerators: particle sources, RF systems, magnets, vacuum systems
Linear beam optics: equations of motion, matrix formalism, particle beams and phase space
Circular accelerators: periodic focusing systems, transverse beam dynamics, longitudinal beam dynamics
Guided tours through the ELSA accelerator of the Physics Institute and excursions to other particle accelerators (COSY, MAMI, HERA, ...) complementing the lecture

Recommended Literature:
F. Hinterberger; Physik der Teilchenbeschleuniger und Ionenoptik (Springer Heidelberg 1997)
H. Wiedemann; Particle Accelerator Physics (Springer, Heidelberg 2. Aufl. 1999)
K. Wille; Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen (Teubner, Wiesbaden 2. Aufl. 1996)
D. A. Edwards, M.J. Syphers; An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993
Script of the Lecture "Particle Accelerators"
http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/
Module: Specialization: Experimental Physics

Module No.: physics61a

Course: Physics of Particle Detectors

Course No.: physics618

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Useful: physik510

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding the basics of the physics of particle detectors, their operation and readout

Contents of the Course:
Physics of detectors and detection mechanisms, interactions of charged particles and photons with matter, ionization detectors, drift and diffusion, gas filled wire chambers, proportional and drift chambers, semiconductor detectors, microstrip detectors, pixel detectors, radiation damage, cerenkov detectors, transition radiation detectors, scintillation detectors (anorganic crystals and plastic scintillators), electromagnetic calorimeters, hadron calorimeters, readout techniques, VLSI readout and noise

Recommended Literature:
Wermes: Skriptum and web-based Teaching Module
K. Kleinknecht; Detectors for Particle Radiation (Cambridge University Press 2nd edition 1998)
W.R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2nd ed. 1994)
H. Spieler, Semiconductor detector system (Oxford University Press 2005)
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Experimental Physics

Module No.: physics61a

Course: Condensed Matter Physics

Course No.: physics613

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding of the concepts of condensed matter physics

Contents of the Course:
Crystallographic structures: Bravais lattices, Millers indices, crystallographic defects, structural analysis;
Chemical bonds: van der Waals bond, covalent bond, hybridisation, ionic bond, metallic bond, Hydrogen bridge bond;
Lattice vibrations: acoustic and optical phonons, specific heat, phonon-phonon interaction;
Free electrons in the solid state: free electron gas, Drude model, Fermi distribution, specific heat of the electrons;
Band structure: metals, semiconductors, insulators, effective masses, mobility of charge carrier, pn-transition, basic principles of diodes, bipolar and unipolar transistors;
Superconductivity: basic phenomena, Cooper pairs, BSC-theory and its consequences;
Magnetic properties: diamagnetism, Langevin-theory of paramagnetism, Pauli-paramagnetism, spontaneous magnetic order, molecular field, Heisenberg-exchange;
Nuclear solid state physics: Hyperfine interaction, Mössbauer spectroscopy, perturbed angular correlation, positron annihilation, typical applications.

Recommended Literature:
Degree: M.Sc. in Physics (PO von 2014)

Module:

Specialization: Experimental Physics

Module No.: physics61a

Course:

Condensed Matter Physics I

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in condensed matter physics and quantum mechanics

Form of Testing and Examination:
Oral or written examination

Length of Course:
2 semesters

Aims of the Course:
Comprehensive introduction to the basic principles of solid state physics and to some experimental methods. Examples of current research will be discussed.

Contents of the Course:
The entire course (Condensed Matter I & II, given in 2 semesters) covers the following topics:
Crystal structure and binding
Reciprocal space
Lattice dynamics and thermal properties
Electronic structure (free-electron gas, Fermi surface, band structure)
Semiconductors and metals
Transport properties
Dielectric function and screening
Superconductivity
Magnetism

Recommended Literature:
Skriptum (available during the course)
Ashcroft/Mermin: Solid State Physics
Kittel: Introduction to Solid State Physics
Ibach/Lüth: Festkörperphysik
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Experimental Physics

Module No.: physics61a

Course: Laser Physics and Nonlinear Optics

Course No.: physics614

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
To make the students understand laser physics and nonlinear optics and enable them to practically apply their knowledge in research and development.

Pivotal experiments will be shown during the lecture. The acquired knowledge will be dealt with in depth in the exercise groups. An additional offer: interested students may build and investigate a nitrogen laser device.

Contents of the Course:
Laser physics: advanced geometric optics and wave optics (ABCDmatrix, Gauss rays, wave guides).
Nonlinear Optics: Frequency doubling, sum-, difference frequency generation, parametric oscillators, phase matching (critical, non-critical, quasi), photorefraction, nonlinear Kerr effect, 4-wave mixing.

Recommended Literature:
R. Menzel; Photonics (Springer, Berlin 2001)
Y.-R. Shen; The principles of nonlinear optics (Wiley, New York (u.a.) 1984)
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Experimental Physics

Module No.: physics61a

Course: Advanced Atomic, Molecular, and Optical Physics

Course No.: physics620

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of Quantum Mechanics, Atomic Physics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work within the exercises

Length of Course:
1 semester

Aims of the Course:
The aim of the course is to give the students a deeper insight to the field of atomic, molecular and optical (AMO) physics. Building on prior knowledge from the Bachelor courses it will cover advanced topics of atomic and molecular physics, as well as the interaction of light and matter.

Contents of the Course:
Atomic physics: Atoms in external fields; QED corrections: Lamb-Shift; Interaction of light and matter: Lorentz oscillator, selection rules; magnetic resonance; Coherent control

Molecular physics: Hydrogen Molecule; Vibrations and rotations of molecules; Hybridization of molecular orbitals; Feshbach Resonances; Photoassociation; Cold Molecules

Bose Condensation; Matterwave Optics

Recommended Literature:
C. J. Foot, Atomic Physics, Oxford University Press 2005
H. Haken, The physics of atoms and quanta, Springer 1996
S. Svanberg, Atomic and molecular spectroscopy basic aspects and practical applications, Springer 2001
W. Demtröder, Molecular Physics, Wiley VCH 2005
T. Buyana, Molecular physics, World Scientific 1997
W. Demtröder, Atoms, Molecules and Photons, Springer 2010
P. Meystre, Atom Optics, Springer 2010
Module: Specialization: Experimental Physics

Module No.: physics61a

Course: Molecular Physics I

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Atomic Physics, Molecular Physics and Quantum Mechanics at the level of the bachelor courses in physics

Form of Testing and Examination:
Oral Examination

Length of Course:
1 semester

Aims of the Course:
In the first part of the core courses the students learn the main concepts of molecular physics: separation of electronic, vibrational and rotational motion. Simple molecular spectra can be analyzed on the basis of the problem class. Fundamental group theory is used to predict vibrational and rotational spectra of more complex molecules.

This module prepares for topics of current research in molecular physics and provides the basis for the preparation of the master thesis.

Contents of the Course:
- Basics of molecular spectroscopy, phenomenology, diatomic molecules
- Born-Oppenheimer Approximation, separation of rotation and vibration
- Molecular Dipole moment and rotational transitions
- Rotational spectra and the rigid rotor approach
- Selection rules, parallel and perpendicular type spectra
- Nuclear spin statistics
- Hyperfine structure of molecular lines

Recommended Literature:
Bernath, "Spectra of Atoms and Molecules", Oxford University Press
Townes Schawlow, "Microwave Spectroscopy" (Dover Publications)
Gordy & Cook, Microwave Spectra" (Wiley)
Engelke, "Aufbau der Moleküle" (Teubner)
Module: Specialization: Advanced Experimental Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Particle Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Physics of Hadrons</td>
<td>physics632</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>3.</td>
<td>Advanced Topics in High Energy Particle Physics</td>
<td>physics639</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>ST</td>
</tr>
<tr>
<td></td>
<td>Condensed Matter and Photonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Quantum Optics</td>
<td>physics631</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>2.</td>
<td>Magnetism/Superconductivity</td>
<td>physics634</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>3.</td>
<td>Photonic Devices</td>
<td>physics640</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>4.</td>
<td>Molecular Physics II</td>
<td>MolPhys II</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
see with the course

Content:
Fundamentals on an advanced level in experimental physics in Bonn or Cologne

Aims/Skills:
The students will get acquainted with modern research topics

Course achievement/Criteria for awarding cp's:
see with the course

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 24 CP out of all 6 Specialization Modules
Module: **Specialization: Advanced Experimental Physics**

Module No.: physics62a

Course: **Physics of Hadrons**

Course No.: physics632

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Completed B.Sc. in Physics, with experience in electrodynamics, quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding the many-body structure of hadrons, understanding structural examinations with electromagnetic probes, introduction into experimental phenomenology

Contents of the Course:
Structure Parameters of baryons and mesons; hadronic, electromagnetic and weak probes; size, form factors and structure functions; quarks, asymptotic freedom, confinement, resonances; symmetries and symmetry breaking, hadron masses; quark models, meson and baryon spectrum; baryon spectroscopy and exclusive reactions; missing resonances, exotic states

Recommended Literature:
K. Gottfried, F. Weisskopf; Concepts of Particle Physics (Oxford University Press 1986)
Module: Specialization: Advanced Experimental Physics

Module No.: physics62a

Course: High Energy Collider Physics

Course No.: physics633

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
physics611 (Particle Physics)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
In depth treatment of particle physics at high energy colliders with emphasis on LHC

Contents of the Course:
Kinematics of electron-proton and proton-(anti)proton collisions,
Electron-positron, electron-hadron and hadron-hadron reactions, hard scattering processes,
Collider machines (LEP, Tevatron and LHC) and their detectors (calorimetry and tracking),
the Standard Model of particle physics in the nutshell, fundamental questions posed to the LHC,
spontaneous symmetry breaking and experiment,
QCD and electroweak physics with high-energy hadron colliders,
Physics of the top quark, top cross section and mass measurements,
Higgs Physics at the LHC (search strategies, mass measurement, couplings),
Supersymmetry and beyond the Standard Model physics at the LHC
Determination of CKM matrix elements, CP violation in K and B systems,
Neutrino oscillations

Recommended Literature:
V. D. Barger, R. Phillips; Collider Physics (Addison-Wesley 1996)
D. Green; High PT Physics at Hadron Colliders (Cambridge University Press 2004)
C. Berger; Elementarteilchenphysik (Springer, Heidelberg 2nd revised edition 2006)
A. Seiden; Particle Physics A Comprehensive Introduction (Benjamin Cummings 2004)
T. Morii, C.S. Lim; S.N. Mukherjee Physics of the Standard Model and Beyond (World Scientific 2004)
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Advanced Experimental Physics

Module No.: physics62a

Course: Advanced Topics in High Energy Particle Physics

Course No.: physics639

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
physics611 (Particle Physics)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises.

Length of Course:
1 semester

Aims of the Course:
To discuss advanced topics of high energy particle physics which are the subject of current research efforts and to deepen understanding of experimental techniques in particle physics.

Contents of the Course:
Selected topics of current research in experimental particle physics. Topics will be updated according to progress in the field. For example:
- LHC highlights
- CP-violation experiments
- Experimental challenges in particle and astroparticle physics
- Current questions in neutrino physics

Recommended Literature:
A. Seiden; Particle Physics: A Comprehensive Introduction (Cummings 2004)
R.K. Ellis, B.R. Webber, W.J. Stirling; QCD and Collider Physics (Cambridge Monographs on Particle Physics 1996)
F. Halzen, A. Martin; Quarks and Leptons (J. Wiley, Weinheim 1998)
C. Berger; Elementarteilchenphysik (Springer, Heidelberg, 2. überarb. Aufl. 2006)
Module: Specialization: Advanced Experimental Physics

Module No.: physics62a

Course: Quantum Optics

Course No.: physics631

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Make the students understand quantum optics and enable them to practically apply their knowledge in research and development.

Contents of the Course:
Bloch Vector, Bloch equations,
Quantization of the electromagnetic field; representations;
coherence, correlation functions; single-mode quantum optics; squeezing;
interaction of quantized radiation and atoms;
two & three level atoms; artificial atoms;
quantum information
Laser cooling; quantum gases

Recommended Literature:
R. Loudon; The quantum theory of light (Oxford University Press 2000)
G. J. Milburn, D. F. Walls; Quantum Optics (Springer 1994)
M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge 1997)
P. Meystre, M. Sargent; Elements of Quantum Optics (Springer 1999)
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Advanced Experimental Physics

Module No.: physics62a

Course: Magnetism/Superconductivity

Course No.: physics634

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
To give an introduction to the standard theories of both fields as major example of collective phenomena in condensed-matter physics and comparison with experiments

Contents of the Course:
Magnetism:
orbital and spin magnetism without interactions, exchange interactions, phase transitions, magnetic ordering and domains, magnetism in 1-3 dimensions, spin waves (magnons), itinerant magnetism, colossal magnetoresistance
Superconductivity:
macroscopic aspects, type I and type II superconductors, Ginzburg-Landau theory, BCS theory, Josephson effect, superfluidity, high-temperature superconductivity

Recommended Literature:
L. P. Lévy: Magnetism and superconductivity (Springer; Heidelberg 2000)
J. F. Annett: Superconductivity, super fluids and condensates (Oxford University Press 2004)
Module: Specialization: Advanced Experimental Physics

Module No.: physics62a

Course: Photonic Devices

Course No.: physics640

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work within the exercises

Length of Course:
1 semester

Aims of the Course:
To make the students understand physical and technological foundations of photonics and enable them to practically apply their knowledge in research and development.

Contents of the Course:
Optics: Rays, Beams, Waves; Fourieroptics;
Light sources; Detectors; Imaging devices
Waveguides, Fibers; Photonic Crystals; Metamaterials;
Optical amplification; Acoustooptics, electrooptics;
Photonic circuits, optical communication
Applications

Recommended Literature:
A. Yariv; Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press 6th edition 2006)
C. Yeh; Applied Photonics (Academic Press, 1994)
R. Menzel; Photonics (Springer, Berlin 2001)
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Advanced Experimental Physics

Module No.: physics62a

Course: Molecular Physics II

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Atomic Physics, Molecular Physics and Quantum Mechanics at the level of the bachelor courses in physics, Molecular Physics I

Form of Testing and Examination:
Oral Examination

Length of Course:
1 semester

Aims of the Course:
In the second part of the core courses more complex issues of molecular spectra are introduced. The students will be enabled to analyze spectra of complex molecules which are subject to couplings between electronic, vibrational and rotational motions.
In the special courses basic and advanced molecular physics are applied to atmospherical and astronomical environments.
This module prepares for topics of current research in molecular physics and provides the basis for the preparation of the master thesis.

Contents of the Course:
- Vibrational modes of polyatomic molecules
- Fundamentals of point group symmetry
- Vibrational dipole moment and selection rules
- Characteristic ro-vibrational spectra of selected molecules
- Breakdown of Born-Oppenheimer Approximation
- Coupling of rotation and vibration
- Coupling of angular momenta in molecular physics

Recommended Literature:
Bernath, "Spectra of Atoms and Molecules", Oxford University Press
Townes Schawlow, "Microwave Spectroscopy" (Dover Publications)
Gordy & Cook, Microwave Spectra" (Wiley)
Engelke, "Aufbau der Moleküle" (Teubner)
Module: Specialization: Applied Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>t.b.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
see with the course

Content:
Fundamentals in applied physics in Bonn or Cologne

Aims/Skills:
The students will get acquainted with modern research topics

Course achievement/Criteria for awarding cp’s:
see with the course

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 24 CP out of all 6 Specialization Modules
Module: Specialization: Advanced Applied Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>t.b.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
see with the course

Content:
Fundamentals on an advanced level in applied physics in Bonn or Cologne

Aims/Skills:
The students will get acquainted with modern research topics

Course achievement/Criteria for awarding cp’s:
see with the course

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 24 CP out of all 6 Specialization Modules
Module: Specialization: Theoretical Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theoretical Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Theoretical Particle Physics</td>
<td>physics615</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>2.</td>
<td>Theoretical Hadron Physics</td>
<td>physics616</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>3.</td>
<td>Theoretical Condensed Matter Physics</td>
<td>physics617</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>WT</td>
</tr>
<tr>
<td>4.</td>
<td>Solid State Theory I</td>
<td>TheoSolidSt</td>
<td>6</td>
<td>Lect. + ex.</td>
<td>180 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
see with the course

Content:
Fundamentals in theoretical physics in Bonn or Cologne

Aims/Skills:
Mit den Spezialisierungsvorlesungen wird die Möglichkeit eröffnet, sich in einer bzw. mehreren der in Bonn vertretenen Forschungsrichtungen zu spezialisieren.
The students will get acquainted with modern research topics

Course achievement/Criteria for awarding cp’s:
see with the course

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 24 CP out of all 6 Specialization Modules
Module: Specialization: Theoretical Physics

Module No.: physics61c

Course: Theoretical Particle Physics

Course No.: physics615

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
- Advanced quantum theory (physics606)
- Quantum field theory (physics755)
- Group theory (physics751)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Introduction to the standard model of elementary particle physics and its extensions (unified theories)

Contents of the Course:
- Classical field theory, gauge theories, Higgs mechanism;
- Standard model of strong and electroweak interactions;
- Supersymmetry and the supersymmetric extension of the standard model;
- Grand unified theories (GUTs);
- Neutrino physics;
- Cosmological aspects of particle physics (dark matter, inflation)

Recommended Literature:
- M. E. Peskin, D.V. Schroeder; An introduction to quantum field theory (Addison Wesley, 1995)
- J. Wess; J. Bagger; Supersymmetry and supergravity (Princeton University Press 1992)
Module:
Specialization: Theoretical Physics

Module No.: physics61c

Course:
Theoretical Hadron Physics

Course No.: physics616

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced quantum theory (physics606)
Quantum field theory (physics755)
Group theory (physics751)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Introduction to the theory of strong interaction, hadron structure and dynamics

Contents of the Course:
Meson and Baryon Spectra: Group theoretical Classification, Simple Quark Models
Basics of Quantum Chromodynamics: Results in Perturbation Theory
Effective Field Theory
Bethe-Salpeter Equation

Recommended Literature:
F. Donoghue, E. Golowich, B.R. Holstein; Dynamics of the Standard Model (Cambridge University Press 1994)
C. Itzykson, J.-B. Zuber; Quantum Field Theory (Dover Publications 2005)
S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)
Module: Specialization: Theoretical Physics

Module No.: physics61c

Course: Theoretical Condensed Matter Physics

Course No.: physics617

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced Quantum Theory (physics606)
Quantum Field Theory (physics755)
Group theory (physics751)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Introduction to the theoretical standard methods and understanding important phenomena in the Physics of Condensed Matter

Contents of the Course:
Crystalline Solids: Lattice structure, point groups, reciprocal lattice
Elementary excitations of a crystal lattice: phonons
Electrons in a lattice; Bloch theorem, band structure
Fermi liquid theory
Magnetism
Symmetries and collective excitations in solids
Superconductivity
Integer and fractional quantum Hall effects

Recommended Literature:
P. M. Chaikin, T.C. Lubensky; Principles of Condensed Matter Physics (Cambridge University Press 1997)
W. Nolting; Grundkurs Theoretische Physik Band 7: Vielteilchentheorie (Springer, Heidelberg 2002)
Ch. Kittel; Quantentheorie der Festkörper (Oldenburg Verlag, München 3. Aufl. 1989)
Module: Specialization: Theoretical Physics

Module No.: physics61c

Course: Solid State Theory I

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
training in theoretical physics at the B.Sc. level, experimental solid state physics

Form of Testing and Examination:
written or oral examination

Length of Course:
1 semester

Aims of the Course:
this course gives an introduction to the physics of electrons and phonons in solids together with theoretical concepts and techniques as applied to these systems.

Contents of the Course:
The lecture investigates basic concepts to describe solids and their excitations. Various applications are discussed with emphasis on experimental and theoretical research directions of the physics department in Cologne.

Recommended Literature:
Ashcroft/ Mermin: "Solid State Physics"
Module: Specialization: Advanced Theoretical Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Theoretical Particle Physics</td>
<td>physics636</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>2</td>
<td>Advanced Theoretical Hadron Physics</td>
<td>physics637</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>ST</td>
</tr>
<tr>
<td>3</td>
<td>Advanced Theoretical Condensed Matter Physics</td>
<td>physics638</td>
<td>7</td>
<td>Lect. + ex.</td>
<td>210 hrs</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
see with the course

Content:
Fundamentals on an advanced level in theoretical physics in Bonn or Cologne

Aims/Skills:
The students will get acquainted with modern research topics

Course achievement/Criteria for awarding cp's:
see with the course

Length of Module: 1 Semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 24 CP out of all 6 Specialization Modules
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Advanced Theoretical Physics
Module No.: physics62c

Course: Advanced Theoretical Particle Physics
Course No.: physics636

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Theoretical Particle Physics (physics615)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the

Length of Course:
1 semester

Aims of the Course:
Survey of methods of theoretical high energy physics beyond the standard model, in particular supersymmetry and extra dimensions in regard to current research

Contents of the Course:
Introduction to supersymmetry and supergravity,
Supersymmetric extension of the electroweak standard model,
Supersymmetric grand unification,
Theories of higher dimensional space-time,
Unification in extra dimensions

Recommended Literature:
J. Wess; J. Bagger; Supersymmetry and supergravity (Princeton University Press 1992)
H. P. Nilles, Supersymmetry, Supergravity and Particle Physics, Physics Reports 110 C (1984) 1
D. Bailin; A. Love; Supersymmetric Gauge Field Theory and String Theory (IOP Publishing Ltd. 1994)
P. Freund; Introduction to Supersymmetry (Cambridge University Press 1995)
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Advanced
Theoretical Physics

Module No.: physics62c

Course: Advanced Theoretical Hadron
Physics

Course No.: physics637

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
physics616 (Theoretical Hadron Physics)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Survey of methods of theoretical hadron physics in regard to current research

Contents of the Course:
Quantum Chromodynamics: Nonperturbative Results, Confinement
Lattice Gauge Theory
Chiral Perturbation Theory
Effective Field Theory for Heavy Quarks

Recommended Literature:
F. E. Close; An Introduction Quarks and Partons (Academic Press 1980)
C. Itzykson, J.-B. Zuber; Quantum Field Theory (Dover Publications 2006)
S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)
Degree: M.Sc. in Physics (PO von 2014)

Module: Specialization: Advanced Theoretical Physics
Module No.: physics62c

Course: Advanced Theoretical Condensed Matter Physics
Course No.: physics638

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
physics617 (Theoretical Condensed Matter Physics)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Survey of methods of theoretical condensed matter physics and their application to prominent examples in regard to current research

Contents of the Course:
Bosonic systems:
Bose-Einstein condensation
Photonics

Quantum dynamics of many-electrons systems:
Feynman diagram technique for many-particle systems at finite temperature
Quantum magnetism, Kondo effect, Renormalization group techniques
Disordered systems: Electrons in a random potential
Superconductivity

Recommended Literature:
A. A. Abrikosov, L.P. Gorkov; Methods of Quantum Field Theory in Statistical Physics (Dover, New York 1977)
W. Nolting; Grundkurs Theoretische Physik Band 7: Vielteilchentheorie (Springer, Heidelberg 2002)
A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, 1997)
C. Itzykson, J.-M. Drouffe; Statistical Field Theory (Cambridge University Press 1991)
J. R. Schrieffer; Theory of Superconductivity (Benjamin/Cummings, Reading/Mass, 1983)
Module: Seminar: Experimental Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seminars on Current Topics in Experimental Physics</td>
<td></td>
<td>4</td>
<td>seminar</td>
<td>120 hrs</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
Presentation

Content:
Topics in modern experimental physics covered by the research groups, including current journal literature

Aims/Skills:
Präsentation fortgeschrittener physikalischer Konzepte und Ideen. The students shall learn to explore a specific scientific topic with the help of libraries and electronic media. The presentation must be concise and structured

Course achievement/Criteria for awarding cp’s:
regular participation and active contribution

Length of Module: 1 semester

Maximum Number of Participants: 20 per seminar

Registration Procedure:

Useable for:
Module: Seminar: Applied Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Seminars on Current Topics in Applied Physics</td>
<td></td>
<td>4</td>
<td>seminar</td>
<td>120 hrs</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
Presentation

Content:
Topics in modern applied physics covered by the research groups, including current journal literature

Aims/Skills:
Präsentation fortgeschrittener physikalischer Konzepte und Ideen.
The students shall learn to explore a specific scientific topic with the help of libraries and electronic media.
The presentation must be concise and structured

Course achievement/Criteria for awarding cp’s:
regular participation and active contribution

Length of Module: 1 semester

Maximum Number of Participants: 20 per seminar

Registration Procedure:

Useable for:
Module: Seminar: Theoretical Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Seminars on Current Topics in Theoretical Physics</td>
<td></td>
<td>4</td>
<td>seminar</td>
<td>120 hrs</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Form of Examination:
Presentation

Content:
Topics in modern theoretical physics covered by the research groups, including current journal literature

Aims/Skills:
The students shall learn to explore a specific scientific topic with the help of libraries and electronic media. The presentation must be concise and structured

Course achievement/Criteria for awarding cp’s:
regular participation and active contribution

Length of Module: 1 semester

Maximum Number of Participants: 20 per seminar

Registration Procedure:

Useable for:
Module: Elective Advanced Lectures: Experimental Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Selected courses from catalogue type "E" (Experimental) or "E/A" (E/Applied)</td>
<td>see catalogue</td>
<td>3-6</td>
<td>see catalogue</td>
<td>90-180 hrs</td>
<td>ST/WT</td>
</tr>
<tr>
<td>2.</td>
<td>Also possible classes from M.Sc. in Astrophysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:
none

Form of Examination:
see with the course

Content:
Advanced lectures in experimental physics

Aims/Skills:
Preparation for Master's Thesis work; broadening of scientific knowledge

Course achievement/Criteria for awarding cp's:
see with the course

Length of Module: 1 or 2 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 18 CP out of all 4 Elective Advanced Modules
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Particle Astrophysics and Cosmology (E)

Course No.: physics711

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
physics611 (Particle Physics), useful: Lectures Observational Astronomy

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Basics of particle astrophysics and cosmology

Contents of the Course:
Observational Overview (distribution of galaxies, redshift, Hubble expansion, CMB, cosmic distance latter, comoving distance, cosmic time, comoving distance and redshift, angular size and luminosity distance); Standard Cosmology (cosmological principle, expansion scale factor, curved space-time, horizons, Friedmann-Equations, cosmological constant, cosmic sum rule, present problems); Particle Physics relevant to cosmology (Fundamental Particles and their Interactions, quantum field theory and Lagrange formalism, Gauge Symmetry, spontaneous symmetry breaking and Higgs mechanism, parameters of the Standard Model, Running Coupling Constants, CP Violation and Baryon Asymmetry, Neutrinos); Thermodynamics in the Universe (Equilibrium Thermodynamics and freeze out, First Law and Entropy, Quantum Statistics, neutrino decoupling, reheating, photon decoupling); Nucleosynthesis (Helium abundance, Fusion processes, photon/baryon ratio) Dark Matter (Galaxy Rotation Curves, Clusters of Galaxies, Hot gas, Gravitational lensing, problems with Cold Dark Matter Models, Dark Matter Candidates); Inflation and Quintessence; Cosmic Microwave Background (origin, intensity spectrum, CMB anisotropies, Temperature correlations, power spectrum, cosmic variance, density and temperature fluctuations, causality and changing horizons, long and short wavelength modes, interpretation of the power spectrum)

Recommended Literature:
A. Liddle; An Introduction to Modern Cosmology (Wiley & Sons 2. Ed. 2003)
E. Kolb, M. Turner; The Early Universe (Addison Wesley 1990)
J. Peacock; Cosmological Physics (Cambridge University Press 1999)
Degree: M.Sc. in Physics (PO von 2014)

Modules: physics70a Elective Advanced Lectures: Experimental Physics
 physics70b Elective Advanced Lectures: Applied Physics

Course: Advanced Electronics and Signal Processing (E/A)

Course No.: physics712

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Electronics laboratory of the B.Sc. in physics programme
Recommended: module nuclear and particle physics of the B.Sc. programme

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Comprehension of the basics of electronics circuits for the processing of (detector) signals, mediation of the basics of experimental techniques regarding electronics and micro electronics as well as signal processing

Contents of the Course:
The physics of electronic devices, junctions, transistors (BJT and FET), standard analog and digital circuits, amplifiers, elements of CMOS technologies, signal processing, ADC, DAC, noise sources and noise filtering, coupling of electronics to sensors/detectors, elements of chip design, VLSI electronics, readout techniques for detectors

Recommended Literature:
S. Sze; The Physics of Semiconductor Devices (Wiley & Sons 1981)
H. Spieler, Semiconductor detector system (Oxford University Press 2005))
J. Krenz; Electronics Concepts (Cambridge University Press 2000)
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course: Particle Detectors and Instrumentation (E/A)

Course No.: physics713

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with laboratory</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Designing an experiment in photoproduction on pi-0, selection and building of appropriate detectors, set-up and implementation of an experiment at ELSA

Contents of the Course:
Quark structure of mesons and baryons, nucleon excitation; electromagnetic probes, electron accelerators, photon beams, relativistic kinematics interaction of radiation with matter, detectors for photons, leptons and hadrons; laboratory course: setup of detectors and experiment at ELSA

Recommended Literature:
W. R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2. Ed. 1994)
K. Kleinknecht; Detektoren für Teilchenstrahlung (Teubner, Wiesbaden 4. überarb. Aufl. 2005)
Course: Advanced Accelerator Physics (E/A)

Course No.: physics714

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST/WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Accelerator Physics (physics612)

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding of the physics of synchrotron radiation and its influence on beam parameters
Basic knowledge of collective phenomena in particle accelerators
General knowledge of applications of particle accelerators (research, medicine, energy management)

Contents of the Course:
Synchrotron radiation:
radiation power, spatial distribution, spectrum, damping, equilibrium beam emittance, beam lifetime
Space-charge effects:
self-field and wall effects, beam-beam effects, space charge dominated beam transport, neutralization of beams by ionization of the residual gas
Collective phenomena:
wake fields, wake functions and coupling impedances, spectra of a stationary and oscillating bunches, bunch interaction with an impedance, Robinson instability
Applications of particle accelerators:
medical accelerators, neutrino facilities, free electron lasers, nuclear waste transmutation, etc.

Recommended Literature:
F. Hinterberger; Physik der Teilchenbeschleuniger und Ionenoptik (Springer, Heidelberg 1997)
H. Wiedemann; Particle Accelerator Physics (Springer, Heidelberg 2 Aufl. 1999)
K. Wille; Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen (Teubner, Wiesbaden 2. Aufl. 1996)
D. A. Edwards, M.J. Syphers; An Introduction to the Physics of High Energy Accelerators (Wiley & Sons 1993)
A. Chao; Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley & Sons 1993)
Script of the Lecture Particle Accelerators (physics612)
http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Experiments on the Structure of Hadrons (E)

Course No.: physics715

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding the structure of the nucleon, understanding experiments on baryon-spectroscopy, methods of identifying resonance contributions, introduction into current issues in meson-photoproduction

Contents of the Course:
Discoveries in hadron physics, quarks, asymptotic freedom and confinement; multiplets, symmetries, mass generation; quark models, baryon spectroscopy, formation and decay of resonances, meson photoproduction; hadronic molecules and exotic states

Recommended Literature:
K. Gottfried, F. Weisskopf; Concepts of Particle Physics (Oxford University Press 1986)
A. Thomas, W. Weise, The Structure of the Nucleon (Wiley-VCH, Weinheim, 2001)
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Statistical Methods of Data Analysis (E)

Course No.: physics716

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Provide a foundation in statistical methods and give some concrete examples of how the methods are applied to data analysis in particle physics experiments

Contents of the Course:
Fundamental concepts of statistics, probability distributions, Monte Carlo methods, fitting of data, statistical and systematic errors, error propagation, upper limits, hypothesis testing, unfolding

Recommended Literature:
S. Brandt: Datenanalyse (Spektrum Akademischer Verlag, Heidelberg 4. Aufl. 1999)
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: High Energy Physics Lab (E)

Course No.: physics717

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Laboratory</td>
<td>English</td>
<td></td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Recommended: B.Sc. in physics, physics611 (Particle Physics) or physics618 (Physics of Particle Detectors)

Form of Testing and Examination:
Credit points can be obtained after completion of a written report or, alternatively, a presentation in a meeting of the research group.

Length of Course:
4-6 weeks

Aims of the Course:
This is a research internship in one of the high energy physics research groups which prepare and carry out experiments at external accelerators. The students deepen their understanding of particle and/or detector physics by conducting their own small research project as a part-time member of one of the research groups. The students learn methods of scientific research in particle physics data analysis, in detector development for future colliders or in biomedical imaging (X-FEL) and present their work at the end of the project in a group meeting.

Contents of the Course:
Several different topics are offered among which the students can choose. Available projects can be found at http://heplab.physik.uni-bonn.de. For example:
- Analysis of data from one of the large high energy physics experiments (ATLAS, D0, ZEUS)
- Investigation of low-noise semiconductor detectors using cosmic rays, laser beams or X-ray tubes
- Study of particle physics processes using simulated events
- Signal extraction and data mining with advanced statistical methods (likelihoods, neural nets or boosted decision trees)

Recommended Literature:
Will be provided by the supervisor
Degree: M.Sc. in Physics (PO von 2014)

Modules:

- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course:

Programming in Physics and Astronomy with C++ or Python

(E/A)

Course No.: physics718

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge of programming and knowledge of simple C/C++ or Python constructs.

Form of Testing and Examination:
C/C++ part: Requirements for the examination (written or oral): successful work with the exercises.
Python part: Requirements for examination: successful implementation of the scientific projects in Python during the semester.

Length of Course:
1 semester

Aims of the Course:
C++ part: In-depth understanding of C++ and its applications in particle physics. Discussion of advanced features of C++ using examples from High Energy Physics. The course is intended for students with some background in C++ or for advanced students who wish to apply C++ in their graduate research.
Python part: Effective and flexible program solving with the easy-to-learn, high level programming language Python. The course addresses master and PhD students with prior Python-programming knowledge as taught in the bachelor course physics131.

Contents of the Course:
C++ part: - Basic ingredients of C++, - Object orientation: classes, inheritance, polymorphism, - How to solve physics problems with C++, - Standard Template Library, - C++ in data analysis, example: the ROOT library, - C++ and large scale calculations, - How to write and maintain complex programs, - Parallel computing and the Grid, - Debugging and profiling
Python part: - In-depth introduction to Python based on prior programming experience, - Introduction to numpy arrays (primary Python data structure for scientific computing), - Introduction to scientific-Python modules (scipy, astropy), - Interactive work / development with Python (ipython), - Web interaction with Python (jupyter notebooks, web and database queries), - Plotting with Python (the matplotlib module)

Recommended Literature:
Lippman, Lajoie, Moo: C++ Primer, Addison-Wesley 2000.
Deitel and Deitel, C++ how to program, Prentice Hall 2007.

- The course is given in the summer term and alternates between C++ and Python
- The course can only be taken once for credit points.

January 2018
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Experimental Physics
Module No.: physics70a

Course: Intensive Week: Advanced Topics in High Energy Physics (E)
Course No.: physics719

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Combined lecture, seminar, lab course</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of particle physics

Form of Testing and Examination:
Seminar talk

Length of Course:
1 - 2 weeks

Aims of the Course:
This course is about an advanced, current topic in particle physics. The students will gain insights into recent developments in particle physics and participate in lectures, seminars talks and laboratory projects.

Contents of the Course:
As announced in the course catalogue. The main topic will vary from semester to semester.

Recommended Literature:
Will be given in the lecture.
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Physics with Antiprotons (E)

Course No.: physics720

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Insight in current research topics with antiprotons, understanding experimental methods in particle and nuclear physics, understanding interrelations between different fields of physics such as hadron physics, (astro-)particle physics, atomic physics

Contents of the Course:
Matter-antimatter asymmetry, test of the standard model, anti-hydrogen, anti-protonic atoms, antiproton beams, key issues in hadron physics with antiprotons, planned research facilities (FAIR) and experiments (PANDA)

Recommended Literature:

Further literature will be given in the lecture.
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Intensive Week: Advanced Topics in Hadron Physics (E)

Course No.: physics721

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Combined lecture, seminar, lab course</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of hadron physics

Form of Testing and Examination:
Presentation, working group participation

Length of Course:
1 - 2 weeks

Aims of the Course:
This course will convey recent topics in hadron physics. Guided by lectures, original publications and tutors, the students will prepare a proposal for a planned or recent experiment. The class will not only focus on the experimental aspects, but also on the theoretical motivation for the experiment.

Contents of the Course:
As announced in the course catalogue. The main topics will vary from semester to semester.

Recommended Literature:
Will be given in the lecture
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Advanced Gaseous Detectors - Theory and Practice (E)

Course No.: physics722

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with laboratory</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Completed B.Sc. in physics, with experience in electrodynamics, quantum mechanics, nuclear and particle physics, physics618 (Physics of Particle Detectors)

Form of Testing and Examination:
Requirements for the examination (written or oral): submission of report

Length of Course:
1 semester

Aims of the Course:
- Design, construction, commissioning and characterization of a modern gaseous particle detector
- Simulations: GARFIELD, GEANT, FE-Methods, etc.
- Signals, Readout electronics and Data Acquisition
- Data analysis: pattern recognition methods, track fitting
- Scientific writing: report

Contents of the Course:
- Signal formation in detectors
- Microscopic processes in gaseous detectors
- Readout electronics
- Tools for detector design and simulation
- Performance criteria
- Laboratory course: commissioning of detector with sources, beam test at accelerator
- Track reconstruction

Recommended Literature:
http://root.cern.ch
http://garfieldpp.web.cern.ch/garfieldpp/
Blum, Rolandi, Riegler: Particle Detection with Drift Chambers
Spieler: Semiconductor Detector Systems
Degree: M.Sc. in Physics (PO von 2014)

Modules:

| Physics70a | Elective Advanced Lectures: Experimental Physics |
| Physics70b | Elective Advanced Lectures: Applied Physics |

Course:

Hands-on Seminar: Detector Construction (E/A)

Course No.: physics723

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Laboratory</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Basic knowledge of particle physics

Preparation:
physics618 is helpful but not mandatory

Form of Testing and Examination:
Credit points can be obtained after successful construction and operation of the detector and preparing a written and/or oral report on a specific task

Length of Course:
1 semester

Aims of the Course:
Students will design, construct, assemble and operate a particle detector.

Contents of the Course:
Students will construct, assemble and commission a particle detector. They will gain hands-on experience on detector construction. The students organize and execute the tasks of the project in personal responsibility. This includes many tasks common to more complex research or industrial projects. Topics include:

- order the needed detector components
- prepare CAD drawings
- prepare PCB layout
- develop electronic circuits
- produce and assemble detector parts
- vacuum technology
- cooling technology
- organize the work effort in personal responsibility
- communicate with team members and technical staff

Recommended Literature:
H. Kolanoski, N. Wermes, Teilchendetektoren, (Springer, Heidelberg, 2016)
W. R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2. Ed. 1994)
K. Kleinknecht; Detektoren für Teilchenstrahlung (Teubner, Wiesbaden 4. überarb. Aufl. 2005)
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course: Low Temperature Physics (E/A)

Course No.: physics731

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Elementary thermodynamics; principles of quantum mechanics; introductory lecture on solid state physics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Experimental methods at low (down to micro Kelvin) temperatures; methods of refrigeration; thermometry; solid state physics at low temperatures

Contents of the Course:
Thermodynamics of different refrigeration processes, liquefaction of gases; methods to reach low (< 1 Kelvin) temperatures: evaporation cooling, He-3-He-4 dilution cooling, Pomeranchuk effect, adiabatic demagnetisation of atoms and nuclei; thermometry at low temperatures (e.g. helium, magnetic thermometry, noise thermometry, thermometry using radioactive nuclei); principles for the construction of cryostats for low temperatures

Recommended Literature:
O.V. Lounasmaa; Experimental Principles and Methods Below 1K (Academic Press, London 1974)
R.C. Richardson, E.N. Smith; Experimental Techniques in Condensed Matter Physics at Low Temperatures (Addison-Wesley 1988)
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course: Optics Lab (E/A)

Course No.: physics732

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Laboratory</td>
<td>English</td>
<td></td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Credit points can be obtained after completion of a written report.

Length of Course:
4-6 weeks

Aims of the Course:
The student learns to handle his/her own research project within one of the optics groups

Available projects and contact information can be found at: http://www.iap.uni-bonn.de/opticslab/

Contents of the Course:
Practical training/internship in a research group, which can have several aspects:
- setting up a small experiment
- testing and understanding the limits of experimental components
- simulating experimental situations

Recommended Literature:
Will be given by the supervisor
Course: Holography (E/A)

Course No.: physics734

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
The goal of the course is to provide in-depth knowledge and to provide practical abilities in the field of holography as an actual topic of applied optics

Contents of the Course:
The course will cover the basic principle of holography, holographic recording materials, and applications of holography. In the first part the idea behind holography will be explained and different hologram types will be discussed (transmission and reflection holograms; thin and thick holograms; amplitude and phase holograms; white-light holograms; computer-generated holograms; printed holograms). A key issue is the holographic recording material, and several material classes will be introduced in the course (photographic emulsions; photochromic materials; photo-polymerization; photo-addressable polymers; photorefractive crystals; photosensitive inorganic glasses). In the third section several fascinating applications of holography will be discussed (art; security-features on credit cards, banknotes, and passports; laser technology; data storage; image processing; filters and switches for optical telecommunication networks; novelty filters; phase conjugation ["time machine"]; femtosecond holography; space-time conversion). Interested students can also participate in practical training. An experimental setup to fabricate own holograms is available

Recommended Literature:
Lecture notes;
P. Hariharan; Basics of Holography (Cambridge University Press 2002)
A. Yariv; Photonics (Oxford University Press 6th Ed. 2006)
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Laser Cooling and Matter Waves (E)

Course No.: physics735

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic thermodynamics: fundamentals of quantum mechanics, fundamentals of solid state physics

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
The in-depth lecture shows, in theory and experiments, the fundamentals of laser cooling. The application of laser cooling in atom optics, in particular for the preparation of atomic matter waves, is shown. New results in research with degenerated quantum gases enable us to gain insight into atomic many particle physics

Contents of the Course:
Outline: Light-matter interaction; mechanic effects of light; Doppler cooling; polarization gradient cooling, magneto-optical traps; optical molasses; cold atomic gases; atom interferometry; Bose-Einstein condensation of atoms; atom lasers; Mott insulator phase transitions; mixtures of quantum gases; fermionic degenerate gases

Recommended Literature:
Course: Crystal Optics (E/A)

Course No.: physics736

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Because of their aesthetic nature crystals are termed "flowers of mineral kingdom". The aesthetic aspect is closely related to the symmetry of the crystals which in turn determines their optical properties. It is the purpose of this course to stimulate the understanding of these relations. The mathematical and tools for describing symmetry and an introduction to polarization optics will be given before the optical properties following from crystal symmetry are discussed. Particular emphasis will be put on the magneto-optical properties of crystals in magnetic internal or external fields. Advanced topics such as the determination of magnetic structures and interactions by nonlinear magneto-optics will conclude the course

Contents of the Course:
Crystal classes and their symmetry; basic group theory; polarized light; optical properties in the absence of fields; electro-optical properties; magneto-optical properties: Faraday effect, Kerr effect, magneto-optical materials and devices, semiconductor magneto-optics, time-resolved magneto-optics, nonlinear magneto-optics

Recommended Literature:
R. R. Birss, Symmetry and Magnetism, North-Holland (1966)
K. H. Bennemann: Nonlinear Optics in Metals, Oxford University (1999)
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Intensive Week: Advanced Topics in Photonics and Quantum Optics (E)

Course No.: physics737

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Combined lecture, seminar, lab course</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of optics, fundamentals of quantum mechanics

Form of Testing and Examination:
Seminar or oral examination

Length of Course:
1 - 2 weeks

Aims of the Course:
The intensive course will convey the basics of a recent topic in photonics or quantum optics in theory and experiments. Guided by a combination of lectures, seminar talks (based on original publications) and practical training, the participants will gain insight into recent developments in photonics/quantum optics.

Contents of the Course:
Will be given in the bulletin of lectures. The main theme will vary from term to term

Recommended Literature:
Will be given in the lecture
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Lecture on Advanced Topics in Quantum Optics (E)

Course No.: physics738

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of Quantum Mechanics, Atomic Physics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work within the exercises

Length of Course:
1 semester

Aims of the Course:
The goal of the course is to introduce the students to a special field of research in quantum optics. New research results will be presented and their relevance is discussed.

Contents of the Course:
Will be given in the bulletin of lectures. The main theme will vary from term to term

Recommended Literature:
Will be given in the lecture
Modules:

- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course:

Lecture on Advanced Topics in Photonics (E/A)

Course No.: physics739

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
- Optics

Form of Testing and Examination:
- Requirements for the examination (written or oral): successful work within the exercises

Length of Course:
- 1 semester

Aims of the Course:
- The goal of the course is to introduce the students to a special field of research in photonics. New research results will be presented and their relevance is discussed.

Contents of the Course:
- Will be given in the bulletin of lectures. The main theme will vary from term to term

Recommended Literature:
- Will be given in the lecture

This course may be offered as "Teaching hours (3+1)" with 6 cp, as well
Degree: M.Sc. in Physics (PO von 2014)

Modules:

- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course: Hands-on Seminar: Experimental Optics and Atomic Physics (E/A)

Course No.: physics740

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Laboratory</td>
<td>English</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of optics and quantum mechanics

Form of Testing and Examination:
Credit points can be obtained after successful carrying out the experiments and preparing a written report on selected experiments

Length of Course:
1 semester

Aims of the Course:
The students learn to handle optical setups and carry out optical experiments. This will prepare participants both for the successful completion of research projects in experimental quantum optics/photonics and tasks in the optics industry.

Contents of the Course:
Practical training in the field of optics, where the students start their experiment basically from scratch (i.e. an empty optical table). The training involves the following topics:
- diode lasers
- optical resonators
- acousto-optic modulators
- spectroscopy
- radiofrequency techniques

Recommended Literature:
Will be given by the supervisor

November 2009
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course:

Modern Spectroscopy (E/A)

Course No.: physics741

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of Optics, Fundamentals of Quantum Mechanics

Form of Testing and Examination:
Requirements for the examination (oral or written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
The aim of the course is to introduce the students to both fundamental and advanced concepts of spectroscopy and enable them to practically apply their knowledge.

Contents of the Course:
- Spectroscopy phenomena - time and frequency domain;
- high resolution spectroscopy;
- pulsed spectroscopy; frequency combs;
- coherent spectroscopy;
- nonlinear spectroscopy: Saturation, Raman spectroscopy, Ramsey spectroscopy.
- Applications of spectroscopic methods (e.g. Single molecule spectroscopy; spectroscopy at interfaces & surfaces, spectroscopy of cold atoms; atomic clocks; atom interferometry)

Recommended Literature:
- W. Demtröder; Laser spectroscopy (Springer 2002)
- S. Svanberg; Atomic and molecular spectroscopy basic aspects and practical applications (Springer 2001)
- A. Corney; Atomic and laser spectroscopy (Clarendon Press 1988)
- N. B. Colthup, L. H. Daly, S. E. Wiberley; Introduction to infrared and Raman spectroscopy (Academic Press 1990)
- P. Hannaford; Femtosecond laser spectroscopy (Springer New York 2005)
- C. Rulliere; Femtosecond laser pulses: principles and experiments (Springer Berlin 1998)

Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70c Elective Advanced Lectures: Theoretical Physics

Course: Ultracold Atomic Gases (E/T)

Course No.: physics742

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Mechanics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
This lecture discusses both the experimental and theoretical concepts of ultra-cold atomic gases.

Contents of the Course:
Almost hundred years ago, in 1924, A. Einstein and S.N. Bose predicted the existence of a new state of matter, the so-called Bose-Einstein condensate. It took 70 years to successfully realize this macroscopic quantum state in the lab using ultracold atomic gases (Nobel prize 2001). The main challenge was to achieve cooling to Nanokelvin temperatures, the coolest temperatures ever reached by mankind.

Nowadays, ultracold gases are exciting systems to study a broad range of quantum phenomena. These phenomena range from the direct observation of quantum matter waves and superfluidity over the creation of artificial crystal structures as analogous to solids, to the realization of complex quantum phase transitions of interacting atoms, e.g. the formation of a bosonic Mott-insulator or the BCS superconducting state for Fermions. In this lecture we will discuss both the experimental and theoretical concepts of ultra-cold atomic gases.

Recommended Literature:
C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press)
Module: Elective Advanced Lectures: Experimental Physics

Module No.: physics70a

Course: Platforms for Quantum Technologies (E)

Course No.: physics743

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2 weeks fulltime</td>
<td>5</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Major courses of the 1st MSc term, for example, "Advanced Atomic, Molecular and Optical Physics", "Quantum Optics", "Advanced Quantum Theory", "Theoretical Condensed Matter Physics"

Form of Testing and Examination:
written exam

Length of Course:
2 weeks

Aims of the Course:
Students receive an introduction into quantum technologies both theoretically and experimentally. Focus is on the theoretical foundations of quantum information processing, and experimental platforms primarily used in Bonn (Atomic, molecular and optical systems), Cologne (topological materials) and Aachen (spin & superconducting architectures) in the context of the Excellence Cluster ML4Q.

Contents of the Course:
1. Basics of quantum information processing
2. Atomic, molecular and optical platforms, quantum simulation
3. Solid-state platforms. Focus on quantum computation. Spin qubits, superconducting qubits;
4. Topological platforms, Topological materials, Topological architectures

Recommended Literature:
Nielsen & Chuang “Quantum information processing”
Pethick/Smith “Bose-Einstein condensation”
Lecture notes will be distributed for selected topics
Degree: M.Sc. in Physics (PO von 2014)

Modules:

<table>
<thead>
<tr>
<th>Modules</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics70a</td>
<td>Elective Advanced Lectures: Experimental Physics</td>
</tr>
<tr>
<td>physics70b</td>
<td>Elective Advanced Lectures: Applied Physics</td>
</tr>
<tr>
<td>physics70c</td>
<td>Elective Advanced Lectures: Theoretical Physics</td>
</tr>
</tbody>
</table>

Course: Research Project

Course No.: physics799

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Research Project</td>
<td>English</td>
<td></td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Students are asked to contact one of the BCGS lecturers prior to the start of their research project. Lecturers provide help if needed to find a suitable research group and topic. Not all groups may have projects available at all times, thus participation may be limited.

Preparation:
A specialization lecture from the research field in question or equivalent preparation.

Form of Testing and Examination:
A written report or, alternatively, a presentation in a meeting of the research group.

Length of Course: 4-6 weeks

Aims of the Course:
Students conduct their own small research project as a part-time member of one of the research groups in Bonn. The students learn methods of scientific research and apply them to their project.

Contents of the Course:
One of the following possible items:
- setting up a small experiment,
- analyzing data from an existing experiment,
- simulating experimental situations,
- numerical or analytical calculations in a theory group.

Recommended Literature:
provided by the supervisor within the research group.
Module: Elective Advanced Lectures: Applied Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Selected courses from catalogue type “A” (Applied) or “E/A” (Experimental/A)</td>
<td>see catalogue</td>
<td>3-6</td>
<td>see catalogue</td>
<td>90-180 hrs</td>
<td>ST/WT</td>
</tr>
<tr>
<td>2.</td>
<td>Also possible classes from M.Sc. in Astrophysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:
none

Form of Examination:
see with the course

Content:
Advanced lectures in applied physics

Aims/Skills:
Preparation for Master's Thesis work; broadening of scientific knowledge

Course achievement/Criteria for awarding cp’s:
see with the course

Length of Module: 1 or 2 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 18 CP out of all 4 Elective Advanced Modules
Degree: M.Sc. in Physics (PO von 2014)

Modules:

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics70a</td>
<td>Elective Advanced Lectures: Experimental Physics</td>
</tr>
<tr>
<td>physics70b</td>
<td>Elective Advanced Lectures: Applied Physics</td>
</tr>
</tbody>
</table>

Course: Advanced Electronics and Signal Processing (E/A)

Course No.: physics712

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Electronics laboratory of the B.Sc. in physics programme
Recommended: module nuclear and particle physics of the B.Sc. programme

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Comprehension of the basics of electronics circuits for the processing of (detector) signals, mediation of the basics of experimental techniques regarding electronics and micro electronics as well as signal processing

Contents of the Course:
The physics of electronic devices, junctions, transistors (BJT and FET), standard analog and digital circuits, amplifiers, elements of CMOS technologies, signal processing, ADC, DAC, noise sources and noise filtering, coupling of electronics to sensors/detectors, elements of chip design, VLSI electronics, readout techniques for detectors

Recommended Literature:
S. Sze; The Physics of Semiconductor Devices (Wiley & Sons 1981)
H. Spieler, Semiconductor detector system (Oxford University Press 2005))
J. Krenz; Electronics Concepts (Cambridge University Press 2000)
Module: physics70a Elective Advanced Lectures: Experimental Physics
Module: physics70b Elective Advanced Lectures: Applied Physics

Course: Particle Detectors and Instrumentation (E/A)

Course No.: physics713

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with laboratory</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Preparation:
Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Designing an experiment in photoproduction on pi-0, selection and building of appropriate detectors, set-up and implementation of an experiment at ELSA

Contents of the Course:
Quark structure of mesons and baryons, nucleon excitation; electromagnetic probes, electron accelerators, photon beams, relativistic kinematics interaction of radiation with matter, detectors for photons, leptons and hadrons; laboratory course: setup of detectors and experiment at ELSA

Recommended Literature:
W. R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2. Ed. 1994)
K. Kleinknecht; Detektoren für Teilchenstrahlung (Teubner, Wiesbaden 4. überarb. Aufl. 2005)
Course: Advanced Accelerator Physics (E/A)

Course No.: physics714

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST/WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Accelerator Physics (physics612)

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding of the physics of synchrotron radiation and its influence on beam parameters
Basic knowledge of collective phenomena in particle accelerators
General knowledge of applications of particle accelerators (research, medicine, energy management)

Contents of the Course:
Synchrotron radiation:
radiation power, spatial distribution, spectrum, damping, equilibrium beam emittance, beam lifetime
Space-charge effects:
self-field and wall effects, beam-beam effects, space charge dominated beam transport, neutralization of beams by ionization of the residual gas
Collective phenomena:
wake fields, wake functions and coupling impedances, spectra of a stationary and oscillating bunches, bunch interaction with an impedance, Robinson instability
Applications of particle accelerators:
medical accelerators, neutrino facilities, free electron lasers, nuclear waste transmutation, etc.

Recommended Literature:
F. Hinterberger; Physik der Teilchenbeschleuniger und Ionenoptik (Springer, Heidelberg 1997)
H. Wiedemann; Particle Accelerator Physics (Springer, Heidelberg 2 Aufl. 1999)
K. Wille; Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen (Teubner, Wiesbaden 2. Aufl. 1996)
D. A. Edwards, M.J. Syphers; An Introduction to the Physics of High Energy Accelerators (Wiley & Sons 1993)
A. Chao; Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley & Sons 1993)
Script of the Lecture Particle Accelerators (physics612)
http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course: Programming in Physics and Astronomy with C++ or Python (E/A)

Course No.: physics718

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge of programming and knowledge of simple C/C++ or Python constructs.

Form of Testing and Examination:
C/C++ part: Requirements for the examination (written or oral): successful work with the exercises.
Python part: Requirements for examination: successful implementation of the scientific projects in Python during the semester.

Length of Course:
1 semester

Aims of the Course:
C++ part: In-depth understanding of C++ and its applications in particle physics. Discussion of advanced features of C++ using examples from High Energy Physics. The course is intended for students with some background in C++ or for advanced students who wish to apply C++ in their graduate research.
Python part: Effective and flexible program solving with the easy-to-learn, high level programming language Python. The course addresses master and PhD students with prior Python-programming knowledge as taught in the bachelor course physics131.

Contents of the Course:
C++ part: - Basic ingredients of C++, - Object orientation: classes, inheritance, polymorphism, - How to solve physics problems with C++, - Standard Template Library, - C++ in data analysis, example: the ROOT library, - C++ and large scale calculations, - How to write and maintain complex programs, - Parallel computing and the Grid, - Debugging and profiling
Python part: - In-depth introduction to Python based on prior programming experience, - Introduction to numpy arrays (primary Python data structure for scientific computing), - Introduction to scientific-Python modules (scipy, astropy), - Interactive work / development with Python (ipython), - Web interaction with Python (jupyter notebooks, web and database queries), - Plotting with Python (the matplotlib module)

Recommended Literature:
Lippman, Lajoie, Moo: C++ Primer, Addison-Wesley 2000.
Deitel and Deitel, C++ how to program, Prentice Hall 2007.

- The course is given in the summer term and alternates between C++ and Python
- The course can only be taken once for credit points.

January 2018
Degree: M.Sc. in Physics (PO von 2014)

Modules:

- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course:

Hands-on Seminar: Detector Construction (E/A)

Course No.: physics723

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Laboratory</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Basic knowledge of particle physics

Preparation:
physics618 is helpful but not mandatory

Form of Testing and Examination:
Credit points can be obtained after successful construction and operation of the detector and preparing a written and/or oral report on a specific task

Length of Course:
1 semester

Aims of the Course:
Students will design, construct, assemble and operate a particle detector.

Contents of the Course:
Students will construct, assemble and commission a particle detector. They will gain hands-on experience on detector construction. The students organize and execute the tasks of the project in personal responsibility. This includes many tasks common to more complex research or industrial projects. Topics include:

- order the needed detector components
- prepare CAD drawings
- prepare PCB layout
- develop electronic circuits
- produce and assemble detector parts
- vacuum technology
- cooling technology
- organize the work effort in personal responsibility
- communicate with team members and technical staff

Recommended Literature:
H. Kolanoski, N. Wermes, Teilchendetektoren, (Springer, Heidelberg, 2016)
W. R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2. Ed. 1994)
K. Kleinknecht; Detektoren für Teilchenstrahlung (Teubner, Wiesbaden 4. überarb. Aufl. 2005)
Degree: M.Sc. in Physics (PO von 2014)

Modules:

- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course: Low Temperature Physics (E/A)

Course No.: physics731

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Elementary thermodynamics; principles of quantum mechanics; introductory lecture on solid state physics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Experimental methods at low (down to micro Kelvin) temperatures; methods of refrigeration; thermometry; solid state physics at low temperatures

Contents of the Course:
Thermodynamics of different refrigeration processes, liquefaction of gases; methods to reach low (< 1 Kelvin) temperatures: evaporation cooling, He-3-He-4 dilution cooling, Pomeranchuk effect, adiabatic demagnetisation of atoms and nuclei; thermometry at low temperatures (e.g. helium, magnetic thermometry, noise thermometry, thermometry using radioactive nuclei); principles for the construction of cryostats for low temperatures

Recommended Literature:
O.V. Lounasmaa; Experimental Principles and Methods Below 1K (Academic Press, London 1974)
R.C. Richardson, E.N. Smith; Experimental Techniques in Condensed Matter Physics at Low Temperatures (Addison-Wesley 1988)
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course:

![universitätbonn](image)

Optics Lab (E/A)

Course No.: physics732

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Laboratory</td>
<td>English</td>
<td></td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Credit points can be obtained after completion of a written report.

Length of Course:
4-6 weeks

Aims of the Course:
The student learns to handle his/her own research project within one of the optics groups

Available projects and contact information can be found at: http://www.iap.uni-bonn.de/opticslab/

Contents of the Course:
Practical training/internship in a research group, which can have several aspects:
- setting up a small experiment
- testing and understanding the limits of experimental components
- simulating experimental situations

Recommended Literature:
Will be given by the supervisor
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course: Holography (E/A)

Course No.: physics734

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
The goal of the course is to provide in-depth knowledge and to provide practical abilities in the field of holography as an actual topic of applied optics

Contents of the Course:
The course will cover the basic principle of holography, holographic recording materials, and applications of holography. In the first part the idea behind holography will be explained and different hologram types will be discussed (transmission and reflection holograms; thin and thick holograms; amplitude and phase holograms; white-light holograms; computer-generated holograms; printed holograms). A key issue is the holographic recording material, and several material classes will be introduced in the course (photographic emulsions; photochromic materials; photo-polymerization; photo-addressable polymers; photorefractive crystals; photosensitive inorganic glasses). In the third section several fascinating applications of holography will be discussed (art; security-features on credit cards, banknotes, and passports; laser technology; data storage; image processing; filters and switches for optical telecommunication networks; novelty filters; phase conjugation ["time machine"]; femtosecond holography; space-time conversion). Interested students can also participate in practical training. An experimental setup to fabricate own holograms is available

Recommended Literature:
Lecture notes;
P. Hariharan; Basics of Holography (Cambridge University Press 2002)
A. Yariv; Photonics (Oxford University Press 6th Ed. 2006)
Course: Crystal Optics (E/A)

Course No.: physics736

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:

Because of their aesthetic nature, crystals are termed "flowers of mineral kingdom". The aesthetic aspect is closely related to the symmetry of the crystals which, in turn, determines their optical properties. It is the purpose of this course to stimulate the understanding of these relations. The mathematical and tools for describing symmetry and an introduction to polarization optics will be given before the optical properties following from crystal symmetry are discussed. Particular emphasis will be put on the magneto-optical properties of crystals in magnetic internal or external fields. Advanced topics such as the determination of magnetic structures and interactions by nonlinear magneto-optics will conclude the course.

Contents of the Course:

Crystal classes and their symmetry; basic group theory; polarized light; optical properties in the absence of fields; electro-optical properties; magneto-optical properties: Faraday effect, Kerr effect, magneto-optical materials and devices, semiconductor magneto-optics, time-resolved magneto-optics, nonlinear magneto-optics

Recommended Literature:

R. R. Birss, Symmetry and Magnetism, North-Holland (1966)
K. H. Bennemann: Nonlinear Optics in Metals, Oxford University (1999)
Degree: M.Sc. in Physics (PO von 2014)

Modules:

- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics

Course:

Lecture on Advanced Topics in Photonics (E/A)

Course No.: physics739

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Optics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work within the exercises

Length of Course:
1 semester

Aims of the Course:
The goal of the course is to introduce the students to a special field of research in photonics. New research results will be presented and their relevance is discussed.

Contents of the Course:
Will be given in the bulletin of lectures. The main theme will vary from term to term

Recommended Literature:
Will be given in the lecture

This course may be offered as "Teaching hours (3+1)" with 6 cp, as well
Degree: M.Sc. in Physics (PO von 2014)

Modules:

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics70a</td>
<td>Elective Advanced Lectures: Experimental Physics</td>
</tr>
<tr>
<td>physics70b</td>
<td>Elective Advanced Lectures: Applied Physics</td>
</tr>
</tbody>
</table>

Course: Hands-on Seminar: Experimental Optics and Atomic Physics (E/A)

Course No.: physics740

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Laboratory</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of optics and quantum mechanics

Form of Testing and Examination:
Credit points can be obtained after successful carrying out the experiments and preparing a written report on selected experiments

Length of Course:
1 semester

Aims of the Course:
The students learn to handle optical setups and carry out optical experiments. This will prepare participants both for the successful completion of research projects in experimental quantum optics/photonics and tasks in the optics industry.

Contents of the Course:
Practical training in the field of optics, where the students start their experiment basically from scratch (i.e. an empty optical table). The training involves the following topics:
- diode lasers
- optical resonators
- acousto-optic modulators
- spectroscopy
- radiofrequency techniques

Recommended Literature:
Will be given by the supervisor

November 2009
Course: Modern Spectroscopy (E/A)

Course No.: physics741

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamentals of Optics, Fundamentals of Quantum Mechanics

Form of Testing and Examination:
Requirements for the examination (oral or written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
The aim of the course is to introduce the students to both fundamental and advanced concepts of spectroscopy and enable them to practically apply their knowledge.

Contents of the Course:
Spectroscopy phenomena - time and frequency domain;
high resolution spectroscopy;
pulsed spectroscopy; frequency combs;
coherent spectroscopy;
nonlinear spectroscopy: Saturation, Raman spectroscopy, Ramsey spectroscopy.
Applications of spectroscopic methods (e.g. Single molecule spectroscopy; spectroscopy at interfaces & surfaces, spectroscopy of cold atoms; atomic clocks; atom interferometry)

Recommended Literature:
W. Demtröder; Laser spectroscopy (Springer 2002)
S. Svanberg; Atomic and molecular spectroscopy basic aspects and practical applications (Springer 2001)
A. Corney; Atomic and laser spectroscopy (Clarendon Press 1988)
N. B. Colthup, L. H. Daly, S. E. Wiberley; Introduction to infrared and Raman spectroscopy (Academic Press 1990)
P. Hannaford; Femtosecond laser spectroscopy (Springer New York 2005)
C. Rulliere; Femtosecond laser pulses: principles and experiments (Springer Berlin 1998)
Module: Elective Advanced Lectures: Applied Physics

Module No.: physics70b

Course: Environmental Physics & Energy Physics (A)

Course No.: physics771

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Physik I-V (physik110-physik510)

Form of Testing and Examination:
Active contributions during term and written examination

Length of Course:
1 semester

Aims of the Course:
A deeper understanding of energy & environmental facts and problems from physics (and, if needed, nature or agricultural science) point of view

Contents of the Course:
After introduction into related laws of nature and after a review of supply and use of various resources like energy a detailed description on each field of use, use-improvement strategies and constraints and consequences for environment and/or human health & welfare are given.

Recommended Literature:
Hensing, I., Pfaffenberger, W., Ströbele, W.: Energiewirtschaft, Oldenbourg 1998
Fricke, J., Borst, W.: Energie, Oldenbourg 1986
Thorndyke, W.: Energy and Environment, Addison Wesley 1976
Schönwiese, C. D., Diekmann, B., Der Treibhauseffekt, DVA 1986
Module: Elective Advanced Lectures: Applied Physics

Module No.: physics70b

Course: Physics in Medicine: Fundamentals of Analyzing Biomedical Signals (A)

Course No.: physics772

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Elementary thermodynamics; principles of quantum mechanics, principles of condensed matter

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding of the principles of physics and the analysis of complex systems

Contents of the Course:
Introduction to the theory of nonlinear dynamical systems; selected phenomena (e.g. noise-induced transition, stochastic resonance, self-organized criticality); Nonlinear time series analysis: state-space reconstruction, dimensions, Lyapunov exponents, entropies, determinism, synchronization, interdependencies, surrogate concepts, measuring non-stationarity.
Applications: nonlinear analysis of biomedical time series (EEG, MEG, EKG)

Recommended Literature:
Lehnertz: Skriptum zur Vorlesung
E. Ott; Chaos in dynamical systems (Cambridge University Press 2. Aufl. 2002)
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Applied Physics

Module No.: physics70b

Course: Physics in Medicine: Fundamentals of Medical Imaging (A)

Course No.: physics773

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Lectures Experimental Physics I-III (physik111-physik311) respectively

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding of the principles of physics of modern imaging techniques in medicine

Contents of the Course:
Introduction to physical imaging methods and medical imaging; Physical fundamentals of transmission computer tomography (Röntgen-CT), positron emission computer tomography (PET), magnetic resonance imaging (MRI) and functional MRI detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect; applications: analysis of structure and function.
Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging; Basics of neuroelectromagnetic activity, source models instrumentation, detectors, SQUIDs; signal analysis, source imaging, inverse problems, applications

Recommended Literature:
K. Lehnertz: Scriptum zur Vorlesung
S. Webb; The Physics of Medical Imaging (Adam Hilger, Bristol 1988)
O. Dössel; Bildgebende Verfahren in der Medizin (Springer, Heidelberg 2000)
E. Niedermeyer/F. H. Lopes da Silva; Electroencephalography (Urban & Schwarzenberg, 1982)
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Applied Physics

Module No.: physics70b

Course: Electronics for Physicists (E/A)

Course No.: physics774

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Electronics laboratory of the B.Sc. in physics programme

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Comprehension of electronic components, methods to derive the dynamical performance of circuits and mediation that these methods are widely used in various fields of physics

Contents of the Course:
Basics of electrical engineering, RF-electronics I: Telegraph equation, impedance matching for lumped circuits and electromagnetic fields, diodes, transistors, analogue and digital integrated circuits, system analysis via laplace transformation, basic circuits, circuit synthesis, closed loop circuits, oscillators, filters, RF-electronics II: low-noise oscillators and amplifiers

Recommended Literature:
P. Horowitz, W. Hill; The Art of Electronics (Cambridge University Press)
Murray R. Spiegel; Laplace Transformation (McGraw-Hill Book Company)
A.J. Baden Fuller; Mikrowellen (Vieweg)
Lutz v. Wangenheim; Aktive Filter (Hüthig)
Module: Elective Advanced Lectures:
Applied Physics

Module No.: physics70b

Course: Nuclear Reactor Physics (A)

Course No.: physics775

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Fundamental nuclear physics

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Deeper understanding of nuclear power generation (fission and fusion)

Contents of the Course:
Physics of nuclear fission and fusion, neutron flux in reactors, different reactor types, safety aspects, nuclear waste problem, future aspects and
Excursion to a nuclear power plant

Recommended Literature:
H. Hübel: Reaktorphysik (Vorlesungsskript, available during the lecture)
M. Borlein: Kerntechnik, Vogel (2009)
W. M. Stacey: Nuclear Reactor Physics, Wiley & Sons (2007)
Module: Elective Advanced Lectures: Applied Physics

Module No.: physics70b

Course: Physics in Medicine: Physics of Magnetic Resonance Imaging (A)

Course No.: physics776

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Lectures Experimental Physics I-III (physik111-physik311) respectively

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding the principles of Magnetic Resonance Imaging Physics

Contents of the Course:
- Theory and origin of nuclear magnetic resonance (QM and semiclassical approach)
- Spin dynamics, T1 and T2 relaxation, Bloch Equations and the Signal Equation
- Gradient echoes and spin echoes and the difference between T2 and T2*
- On- and off-resonant excitation and the slice selection process
- Spatial encoding by means of gradient fields and the k-space formalism
- Basic imaging sequences and their basic contrasts, basic imaging artifacts
- Hardware components of an MRI scanner, accelerated imaging with multiple receiver
- Computation of signal amplitudes in steady state sequences
- The ultra-fast imaging sequence EPI and its application in functional MRI
- Basics theory of diffusion MRI and its application in neuroimaging
- Advanced topics: quantitative MRI, spectroscopic imaging, X-nuclei MRI

Recommended Literature:
- T. Stöcker: Scriptum zur Vorlesung
Degree: M.Sc. in Physics (PO von 2014)

Modules:
- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics
- physics70c Elective Advanced Lectures: Theoretical Physics

Course: Research Project
Course No.: physics799

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Research Project</td>
<td>English</td>
<td></td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Students are asked to contact one of the BCGS lecturers prior to the start of their research project. Lecturers provide help if needed to find a suitable research group and topic. Not all groups may have projects available at all times, thus participation may be limited.

Preparation:
A specialization lecture from the research field in question or equivalent preparation.

Form of Testing and Examination:
A written report or, alternatively, a presentation in a meeting of the research group.

Length of Course:
4-6 weeks

Aims of the Course:
Students conduct their own small research project as a part-time member of one of the research groups in Bonn. The students learn methods of scientific research and apply them to their project.

Contents of the Course:
One of the following possible items:
- setting up a small experiment,
- analyzing data from an existing experiment,
- simulating experimental situations,
- numerical or analytical calculations in a theory group.

Recommended Literature:
provided by the supervisor within the research group.
Module: Elective Advanced Lectures: Theoretical Physics

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Selected courses from catalogue type "T" (Theoretical)</td>
<td>see catalogue</td>
<td>5-7</td>
<td>see catalogue</td>
<td>150-210 hrs</td>
<td>WT/ST</td>
</tr>
<tr>
<td>2.</td>
<td>Also possible classes from M.Sc. in Astrophysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Participation:
none

Form of Examination:
see with the course

Content:
Advanced lectures in theoretical physics

Aims/Skills:
Preparation for Master's Thesis work; broadening of scientific knowledge

Course achievement/Criteria for awarding cp’s:
see with the course

Length of Module: 1 or 2 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 18 CP out of all 4 Elective Advanced Modules
Course: Ultracold Atomic Gases (E/T)

Course No.: physics742

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Mechanics

Form of Testing and Examination:
Requirements for the examination (written or oral): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
This lecture discusses both the experimental and theoretical concepts of ultra-cold atomic gases.

Contents of the Course:
Almost hundred years ago, in 1924, A. Einstein and S.N. Bose predicted the existence of a new state of matter, the so-called Bose-Einstein condensate. It took 70 years to successfully realize this macroscopic quantum state in the lab using ultracold atomic gases (Nobel prize 2001). The main challenge was to achieve cooling to Nanokelvin temperatures, the coolest temperatures ever reached by mankind. Nowadays, ultracold gases are exciting systems to study a broad range of quantum phenomena. These phenomena range from the direct observation of quantum matter waves and superfluidity over the creation of artificial crystal structures as analogous to solids, to the realization of complex quantum phase transitions of interacting atoms, e.g. the formation of a bosonic Mott-insulator or the BCS superconducting state for Fermions. In this lecture we will discuss both the experimental and theoretical concepts of ultra-cold atomic gases.

Recommended Literature:
C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press)
Course: Group Theory (T)

Course No.: physics751

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
physik421 (Quantum Mechanics)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the

Length of Course:
1 semester

Aims of the Course:
Acquisition of mathematical foundations of group theory with regard to applications in theoretical physics

Contents of the Course:
Mathematical foundations:
Finite groups, Lie groups and Lie algebras, highest weight representations, classification of simple Lie algebras, Dynkin diagrams, tensor products and Young tableaux, spinors, Clifford algebras, Lie super algebras

Recommended Literature:
B. G. Wybourne; Classical Groups for Physicists (J. Wiley & Sons 1974)
H. Georgi; Lie Algebras in Particle Physics (Perseus Books 2. Aufl. 1999)
W. Fulton, J. Harris; Representation Theory (Springer, New York 1991)
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Superstring Theory (T)

Course No.: physics752

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Field Theory (physics755)
Group Theory (physics751)
Advanced Theoretical Physics (physics607) / Advanced Quantum Field Theory (physics7501)
Theoretical Particle Physics (physics615)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the

Length of Course:
1 semester

Aims of the Course:
Survey of modern string theory as a candidate of a unified theory in regard to current research

Contents of the Course:
Bosonic String Theory, Elementary Conformal Field Theory
Kaluza-Klein Theory
Crash Course in Supersymmetry
Superstring Theory
Heterotic String Theory
Compactification, Duality, D-Branes
M-Theory

Recommended Literature:
D. Lüst, S. Theisen; Lectures on String Theory (Springer, New York 1989)
S. Förste; Strings, Branes and Extra Dimensions, Fortsch. Phys. 50 (2002) 221, hep-th/0110055
C. Johnson, D-Brane Primer (Cambridge University Press 2003)
M. Green, J. Schwarz, E. Witten; Superstring Theory I & II (Cambridge University Press 1988)
J. Polchinski; String Theory I & II (Cambridge University Press 2005)
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Theoretical Particle Astrophysics (T)

Course No.: physics753

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
- General Relativity and Cosmology (physics754)
- Quantum Field Theory (physics755)
- Theoretical Particle Physics (physics615)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Introduction to the current status at the interface of particle physics and cosmology

Contents of the Course:
Topics on the interface of cosmology and particle physics:
- Inflation and the cosmic microwave background;
- baryogenesis,
- Dark Matter,
- nucleosynthesis
- the cosmology and astrophysics of neutrinos

Recommended Literature:
- E. Kolb, M. Turner; The Early Universe (Addison Wesley 1990)
Course: General Relativity and Cosmology (T)

Course No.: physics754

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
physik221 and physik321 (Theoretical Physics I and II)
Differential geometry

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding the general theory of relativity and its cosmological implications

Contents of the Course:
Relativity principle
Gravitation in relativistic mechanics
Curvilinear coordinates
Curvature and energy-momentum tensor
Einstein-Hilbert action and the equations of the gravitational field
Black holes
Gravitational waves
Time evolution of the universe
Friedmann-Robertson-Walker solutions

Recommended Literature:
S. Weinberg; Gravitation and Cosmology (J. Wiley & Sons 1972)
R. Sexl; Gravitation und Kosmologie, Eine Einführung in die Allgemeine Relativitätstheorie (Spektrum Akadem. Verlag 5. Aufl 2002)
L.D. Landau, E.M. Lifschitz; Course of Theoretical Physics Vol.2: Classical field theory (Butterworth-Heinemann 1995), also available in German from publisher Harry Deutsch
Module:

- ECThPhysics
- Elective Courses: Theoretical Physics
- physics70c
- Elective Advanced Lectures: Theoretical Physics

Course: Quantum Field Theory (T)

Course No.: physics755

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced quantum theory (physics606)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding quantum field theoretical methods, ability to compute processes in quantum electrodynamics (QED) and many particle systems

Contents of the Course:
Classical field theory
Quantization of free fields
Path integral formalism
Perturbation theory
Methods of regularization: Pauli-Villars, dimensional
Renormalizability
Computation of Feynman diagrams
Transition amplitudes in QED
Applications in many particle systems

Recommended Literature:
N. N. Bogoliubov, D.V. Shirkov; Introduction to the theory of quantized fields (J. Wiley & Sons 1959)
M. Kaku, Quantum Field Theory (Oxford University Press 1993)
M. E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Harper Collins Publ. 1995)
L. H. Ryder; Quantum Field Theory (Cambridge University Press 1996)
S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Critical Phenomena (T)

Course No.: physics756

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced quantum theory (physics606)
Theoretical condensed matter physics (physics617)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Acquisition of important methods to treat critical phenomena

Contents of the Course:
Mean Field Approximation and its Improvements
Critical Behaviour at Surfaces
Statistics of Polymers
Concept of a Tomonaga-Luttinger Fluid
Random Systems
Phase Transitions, Critical Exponents
Scale Behaviour, Conformal Field Theory
Special Topics of Nanoscopic Physics

Recommended Literature:
A. O. Gogolin, A. A. Nersesyan, A.N.Tsvelik; Bosonisation and strongly correlated systems (Cambridge University Press, 1998)
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Effective Field Theory (T)

Course No.: physics757

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced quantum theory (physics606)
Quantum Field Theory (physics755)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding basic properties and construction of Effective Field Theories, ability to perform calculations in Effective Field Theories

Contents of the Course:
Scales in physical systems, naturalness
Effective Quantum Field Theories
Renormalization Group, Universality
Construction of Effective Field Theories
Applications: effective field theories for physics beyond the Standard Model, heavy quarks, chiral dynamics, low-energy nuclear physics, ultracold atoms

Recommended Literature:
S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)
A.V. Manohar, M.B. Wise; Heavy Quark Physics (Cambridge University Press 2007)
D.B. Kaplan, Effective Field Theories (arXiv:nucl-th/9506035)
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Quantum Chromodynamics (T)

Course No.: physics758

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced quantum theory (physics606)
Quantum Field Theory (physics755)

Form of Testing and Examination:
Requirements for the examination (written): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding basic properties of Quantum Chromodynamics, ability to compute strong interaction processes

Contents of the Course:
Quantum Chromodynamics as a Quantum Field Theory
Perturbative Quantum Chromodynamics
Topological objects: instantons etc.
Large N expansion
Lattice Quantum Chromodynamics
Effective Field Theories of Quantum Chromodynamics
Flavor physics (light and heavy quarks)

Recommended Literature:
S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)
M.E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Westview Press 1995)
F.J. Yndurain; The Theory of Quark and Gluon Interactions (Springer 2006)
E. Leader and E. Predazzi; An Introduction to Gauge Theories and Modern Particle Physics (Cambridge University Press 1996)
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures:

Theoretical Physics

Module No.: physics70c

Course: Quantum Field Theory for Condensed Matter Physics (T)

Course No.: physics759

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>5</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Quantum mechanics I (physik421)

Preparation:
Quantum mechanics II (physics606), Thermodynamics and statistical physics (physik521)
Can be heard in parallel to physics617: "Theoretical Condensed Matter Physics"

Form of Testing and Examination:
Requirements for the examination (written or oral): attendance of and successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Knowledge of quantum field theory of interacting many-body systems at finite temperature
Knowledge of quantum field theory for non-equilibrium systems
Ability to construct and evaluate perturbation theory using Feynman diagram

Contents of the Course:
Fock space and occupation number representation for bosons and fermions
Green's functions: analytical properties and their relation to observable quantities
Elementary linear response theory
Equations of motion
Perturbation theory in thermodynamic equilibrium: Feynman diagrams, Matsubara technique
Perturbation theory away from equilibrium: Keldysh technique
Infinite resummations of perturbation expansions
Exemplary application to model system

Recommended Literature:
W. Nolting, Grundkurs Theoretische Physik 7: Vielteilchen-Theorie (Springer, Heidelberg 2009)
A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Dover, New York 1975 and later editions)
Course: Computational Physics (T)

Course No.: physics760

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises and project work</td>
<td>English</td>
<td>2+2+1</td>
<td>7</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Knowledge of a modern programming language (like C, C++)

Preparation:
Theoretical courses at the Bachelor degree level

Form of Testing and Examination:
successful participation in exercises, presentation of an independently completed project

Length of Course:
1 semester

Aims of the Course:
ability to apply modern computational methods for solving physics problems

Contents of the Course:
Statistical Models, Likelihood, Bayesian and Bootstrap Methods
Random Variable Generation
Stochastic Processes
Monte-Carlo methods
Markov-Chain Monte-Carlo

Recommended Literature:
http://library.lanl.gov/numerical/index.html
Tao Pang: An Introduction to Computational Physics (Cambridge University Press)
Binder, Kurt and Heermann, Dieter W.: Monte Carlo Simulation in Statistical Physics (Springer)
Fehske, H.; Schneider, R.; Weisse, A.: Computational Many-Particle Physics (Springer)
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Supersymmetry (T)

Course No.: physics761

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Quantum Field Theory I

Preparation:

Form of Testing and Examination:
Individual Oral Examinations

Length of Course:
1 semester

Aims of the Course:
Teach the students the basics of supersymmetric field theory and how it can be tested at the LHC.

Contents of the Course:
Superfields; Supersymmetric Lagrangians; MSSM; Testing the MSSM at the LHC

Recommended Literature:
Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics.

Weak scale supersymmetry: From superfields to scattering events.
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Transport in mesoscopic systems

Course No.: physics762

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>5</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Classical mechanics
Elementary thermodynamics and statistical physics (physik521)
Advanced quantum theory (physics606)
Introductory theoretical condensed matter physics (physics617)

Form of Testing and Examination:
Requirements for the examination (written or oral); successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding essential transport phenomena in solids and mesoscopic systems
 Acquisition of important methods for treating transport problems

Contents of the Course:
Linear response theory
Disordered and ballistic systems
Semiclassical approximation
Introduction to quantum chaos theory, chaos and integrability in classical and quantum mechanics
Elements of random matrix theory
Specific problems of mesoscopic transport (weak localization, universal conductance fluctuations, shot noise, spin-dependent transport, etc.)
Quantum field theory away from thermodynamic equilibrium

Recommended Literature:
(http://www.physik.uni-regensburg.de/forschung/richter/richter/pages/research/springer-tracts-161.pdf)
F. Haake, Quantum signatures of chaos, Springer, 2001
M. L. Mehta, Random matrices, Elsevier, 2004
J. Imry, Introduction to mesoscopic physics, Oxford University Press
Th. Giamarchi, The physics of one-dimensional systems, Oxford University Press

October 2010
Module: Elective Advanced Lectures: Theoretical Physics
Module No.: physics70c

Course: Advanced Topics in String Theory (T)
Course No.: physics763

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Field Theory (physics755)
Group Theory (physics751)
Advanced Theoretical Physics (physics607) / Advanced Quantum Field Theory (physics7501)
Theoretical Particle Physics (physics615)
Superstring Theory (physics752)

Form of Testing and Examination:
active participation in exercises, written examination

Length of Course:
1 semester

Aims of the Course:
Detailed discussion of modern string theory as a candidate of a unified theory in regard to current research

Contents of the Course:
Realistic compactifications
Interactions
Effective actions
Heterotic strings in four dimensions
Intersecting D-branes

Recommended Literature:
M. Green, J. Schwarz, E. Witten: Superstring Theory I & II (Cambridge University Press 1988)
J. Polchinski: String Theory I & II (Cambridge University Press 2005)
Degree: M.Sc. in Physics (PO von 2014)

Module:
Elective Advanced Lectures:
Theoretical Physics

Module No.: physics70c

Course: Advanced Topics in Field and String Theory (T)

Course No.: physics764

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Prerequisite knowledge of Quantum Field Theory, Superstring Theory, and General Relativity is helpful.

Preparation:
Quantum Field Theory (physics755)
Advanced Theoretical Physics (physics607) / Advanced Quantum Field Theory (physics7501)
Superstring Theory (physics752)

Form of Testing and Examination:
active participation in exercises, oral or written examination

Length of Course:
1 semester

Aims of the Course:
An introduction into modern topics in Mathematical High Energy Physics in regard to current research areas

Contents of the Course:
String and Supergravity Theories in various dimensions
Dualities in Field Theory and String Theory
Topological Field Theories and Topological Strings
Large N dualities and integrability

Recommended Literature:
Selected review articles an arXiv.org [hep-th]
J. Polchinski: String Theory I & II
S. Weinberg: Quantum Theory of Fields
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Advanced Topics in Quantum Field Theory (T)

Course No.: physics765

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Prerequisite knowledge of Quantum Field Theory

Preparation:
Quantum Field Theory (physics755)
Advanced Theoretical Physics (physics607) / Advanced Quantum Field Theory (physics7501)

Form of Testing and Examination:
active participation in exercises, oral or written examination

Length of Course:
1 semester

Aims of the Course:
Covers advanced topics in Quantum Field Theory that are relevant for current developments in the field.

Contents of the Course:
TBA

Recommended Literature:
Selected articles on arXiv.org [hep-th]
TBA
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Physics of Higgs Bosons (T)

Course No.: physics766

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Theoretical Particle Physics (physics615)

Form of Testing and Examination:
Requirement for the examination (written or oral): successful participation in the exercises

Length of Course:
1 semester

Aims of the Course:
Understanding the physics of electroweak symmetry breaking, and the interpretations of the recently discovered signals for the existence of a Higgs boson

Contents of the Course:
Spontaneous symmetry breaking
The Higgs mechanism
The Higgs boson of the Standard Model
Experimental situation
Extended Higgs sectors
Precision calculations

Recommended Literature:
J. Gunion, H.E. Haber, G.L. Kane and S. Dawson: The Higgs Hunter's Guide (Frontiers of Physics, 2000)
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Computational Methods in Condensed Matter Theory (T)

Course No.: physics767

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Field Theory (physics755)
Advanced Theoretical Physics (physics607) / Advanced Quantum Field Theory (physics7501)
Advanced Theoretical Condensed Matter Physics (physics638)

Form of Testing and Examination:
Active participation in exercises, written examination

Length of Course:
1 semester

Aims of the Course:
Detailed discussion of computational tools in modern condensed matter theory

Contents of the Course:
Exact Diagonalization (ED)
Quantum Monte Carlo (QMC)
(Stochastic) Series expansion (SSE)
Density Matrix Renormalization (DMRG)
Dynamical Mean Field theory (DMFT)

Recommended Literature:
will be given in the lecture
Module: Elective Advanced Lectures: Theoretical Physics
Module No.: physics70c

Course: General Relativity for Experimentalists (T)
Course No.: physics768

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Theoretische Physik I & II, Analysis I & II

Form of Testing and Examination:
Weekly homework sets (50% required), Final exam

Length of Course:
1 semester

Aims of the Course:
The students shall learn the basics of general relativity and be able to apply it to applications such as experimental tests of GR, GPS, astrophysical objects and simple issues in cosmology.

Contents of the Course:
Review of special relativity
Curved spacetime of GR
Experimental tests of GR
GPS
Black holes
Gravitational waves
Introductory cosmology

Recommended Literature:
GRAVITY, by James Hartle
A FIRST COURSE IN GENERAL RELATIVITY, by Bernard Schutz
EXPLORING BLACK HOLES, by Taylor and Wheeler
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Lattice QCD (T)

Course No.: physics769

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>ST/WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Mechanics 1+2, Quantum Field Theory 1

Form of Testing and Examination:
Written / oral examination

Length of Course:
1 semester

Aims of the Course:
To give an introduction to the quantum field theory on the lattice

Contents of the Course:
- Introduction: Quantum mechanics on the lattice
- Numerical algorithms
- Spin systems on the lattice: The Ising model
- Scalar field theory on the lattice: Discretization; Perturbation theory; Continuum limit
- Gauge fields: Link variables; Plaquette action; Wilson loop and confinement
- Fermions on the lattice: Fermion doubling; Different formulations for lattice fermions; Axial anomaly; Chiral fermions
- Use of Effective Field Theory methods: Extrapolation in the quark masses; Resonances in a finite volume

Recommended Literature:

I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge Monographs on Mathematical Physics, Cambridge University Press 1994

C. Gattringer and Ch. Lang, Quantum Chromodynamics on the Lattice: An Introductory Presentation Series: Lecture Notes in Physics, Vol. 788

Degree: M.Sc. in Physics (PO von 2014)

Modules:
- ECThPhysics
- Elective Courses
- Theoretical Physics
- physics70c
- Elective Advanced Lectures: Theoretical Physics

Course:

Advanced Quantum Field Theory

(T)

Course No.: physics7501

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
3-year theoretical physics course with extended interest in theoretical physics and mathematics

Form of Testing and Examination:
Requirements for the module examination (written examination): successful work with exercises

Length of Course:
1 semester

Aims of the Course:
Introduction to modern methods and developments in Theoretical Physics in regard to current research

Contents of the Course:
Selected Topics in Modern Theoretical Physics for example:
- Anomalies
- Solitons and Instantons
- Quantum Fluids
- Bosonization
- Renormalization Group
- Bethe Ansatz
- Elementary Supersymmetry
- Gauge Theories and Differential Forms
- Applications of Group Theory

Recommended Literature:
- R. Rajaraman; Solitons and Instantons, An Introduction to Solitons and Instantons in Quantum Field Theory (North Holland Personal Library, Amsterdam 3rd reprint 2003)
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Random Walks and Diffusion (T)

Course No.: physics7502

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>1+1</td>
<td>3</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum mechanics and Thermodynamics

Form of Testing and Examination:
Requirements for the (written or oral) examination: Successful work within the exercises

Length of Course:
1 semester

Aims of the Course:
The aim of the course is to introduce the student to random processes and their application to diffusion phenomena

Contents of the Course:
Basics of probability theory, Master equation and Langevin equation, Law of large numbers and Central Limit Theorem, First passage problems, Large scale dynamics, Dynamical scaling.

Recommended Literature:
Will be announced in the first lecture
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Selected Topics in Modern Condensed Matter Theory (T)

Course No.: physics7503

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+2</td>
<td>7</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
+ Introductory Condensed Matter Theory
+ Quantum Mechanics
+ Statistical Physics

Form of Testing and Examination:
oral or written examination

Length of Course:
1 semester

Aims of the Course:
Knowledge of topics of contemporary condensed matter research
Knowledge of theoretical methods of condensed matter physics

Contents of the Course:
Covers topics and methods of contemporary research, such as
+ Feynman diagram technique
+ Phase transitions and critical phenomena
+ Topological aspects of phenomena in condensed matter physics

Recommended Literature:
R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem
N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group
B. A. Bernevig, Topological Insulators and Topological Superconductors

The course can be taken in parallel to physics617 Theoretical Condensed Matter Physics.
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Theory of Superconductivity and Superfluidity (T)

Course No.: physics7504

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td></td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Mechanics, Thermodynamics and Statistics, Quantum Field Theory

Form of Testing and Examination:
Requirements for the (written or oral) examination: Successful participation in the exercises

Length of Course:
1 semester

Aims of the Course:
The goal of the course is to introduce students to the theory of superconductivity and superfluidity.

Contents of the Course:
Phenomenological theory of basic superconductivity, type I and type II superconductivity, vortices and their dynamics, Meissner-Ochsenfeld Effekt, microscopic theory of superconductivity: Gor’kov equation, BCS theory, Migdal theorem, strong coupling theory of superconductivity: Eliashberg equation, Andreev scattering, Josephson effect, Anderson theorem; impurity scattering, Collective excitations in superconductors and superfluids, Anderson (Higgs) mechanism for the mass generation. Superfluidity in 3He, superconductivity in heavy fermion compounds, high temperature superconductivity and open questions.

Recommended Literature:
Will be announced in the first lecture
Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: High performance computing: Modern computer architectures and applications in the physical science (T)

Course No.: physics7505

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td></td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Knowledge of a modern programming language like C/C++

Preparation:

Form of Testing and Examination:
oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding principles of modern computer architectures and their usage and programming for scientific problems

Contents of the Course:
Computer architectures and system components (CPU, memory, network)
Software environment
Parallel architectures and parallel programming paradigms (MPI, OpenMP/threads)
High Performance Computing

Recommended Literature:
OpenMP Application Programming Interface, Version 4.5, November 2015
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Quark Distributions Functions (T)

Course No.: physics7506

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Field Theory (physics755 or equivalent)

Form of Testing and Examination:
oral examination

Length of Course:
1 semester

Aims of the Course:
By the end of the course, the student should be able to understand the formal parton model, renormalization of parton distributions, and current attempts to compute them on the lattice.

Contents of the Course:
Deep Inelastic Scattering; The Operator Product Expansion; Basics of the parton model; The formal parton model; Quark distributions and quasi-quark distributions; One loop corrections and renormalization; Lattice attempts to compute PDF

Recommended Literature:

Module: Elective Advanced Lectures: Theoretical Physics

Module No.: physics70c

Course: Theory of Quantum Magnetism (T)

Course No.: physics7507

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum mechanics, Thermodynamics and Statistics, Quantum Field Theory

Form of Testing and Examination:
(1) form of examination: written or oral
(2) requirement for participation in examination: successful participation in exercises

Length of Course:
1 semester

Aims of the Course:
The goal of the course is to introduce students to advanced concepts in the theory of magnetism.

Contents of the Course:

Recommended Literature:
Will be announced in the first lecture
Degree: M.Sc. in Physics (PO von 2014)

Modules:

- physics70a Elective Advanced Lectures: Experimental Physics
- physics70b Elective Advanced Lectures: Applied Physics
- physics70c Elective Advanced Lectures: Theoretical Physics

Course: Research Project

Course No.: physics799

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Research Project</td>
<td>English</td>
<td></td>
<td>4</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Students are asked to contact one of the BCGS lecturers prior to the start of their research project. Lecturers provide help if needed to find a suitable research group and topic. Not all groups may have projects available at all times, thus participation may be limited.

Preparation:
A specialization lecture from the research field in question or equivalent preparation.

Form of Testing and Examination:
A written report or, alternatively, a presentation in a meeting of the research group.

Length of Course:
4-6 weeks

Aims of the Course:
Students conduct their own small research project as a part-time member of one of the research groups in Bonn. The students learn methods of scientific research and apply them to their project.

Contents of the Course:
One of the following possible items:
- setting up a small experiment,
- analyzing data from an existing experiment,
- simulating experimental situations,
- numerical or analytical calculations in a theory group.

Recommended Literature:
provided by the supervisor within the research group.
Module: Elective Advanced Lectures: BCGS Courses

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selected courses from catalogue</td>
<td>see catalogue</td>
<td>3-8</td>
<td>see catalogue</td>
<td>90-240 hrs</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
none

Form of Examination:
see with the course

Content:
Advanced lectures within the Bonn Cologne Graduate School of Physics and Astronomy (BCGS).

Aims/Skills:
Preparation for Master's Thesis work; broadening of scientific knowledge

Course achievement/Criteria for awarding cp’s:
see with the course

Length of Module: 1 or 2 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Note: The student must achieve at least 18 CP out of all 4 Elective Advanced Modules
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: BCGS Courses
Module No.: physics70d

Course: Relativity and Cosmology I (T)
Course No.: physics70d

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td>8</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Training in theoretical physics at the B.Sc. level

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Introduction into Einstein's theory of general relativity and its major applications

Contents of the Course:
Gravity as a manifestation of geometry
Introduction to differential geometry
Einstein field equations
The Schwarzschild solution
Experimental tests
Gravitational waves

Recommended Literature:
T. Padmanabhan, Gravitation: Foundation and Frontiers
J. B. Hartle, Gravity: An introduction to Einstein's general relativity
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Relativity and Cosmology II (T)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td>8</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Training in theoretical physics at the B.Sc. level

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Application of Einstein's theory of general relativity to black holes and cosmology

Contents of the Course:
Black holes
Introduction to cosmology
The early Universe

Recommended Literature:
V. Mukhanov, Physical Foundations of Cosmology
T. Padmanabhan, Gravitation: Foundation and Frontiers
J. B. Hartle, Gravity: An introduction to Einstein's general relativity
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Quantum Field Theory I (T)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td>8</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Training in theoretical physics at the B.Sc. level

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Methods of quantum field theory are in use in almost all areas of modern physics. Strongly oriented towards applications, this course offers an introduction based on examples and phenomena taken from the area of solid state physics.

Contents of the Course:
Second quantization and applications
Functional integrals
Perturbation theory
Mean-field methods

Recommended Literature:
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Quantum Field Theory II (T)

Course No.: 8

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Field Theory I

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
Quantum field theory is one of the main tools of modern physics with many applications ranging from high-energy physics to solid state physics. A central topic of this course is the concept of spontaneous symmetry breaking and its relevance for phenomena like superconductivity, magnetism or mass generation in particle physics.

Contents of the Course:
Correlation functions: formalism, and their role as a bridge between theory and experiment
Renormalization
Topological concepts

Recommended Literature:
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Geometry in Physics (T)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td>8</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation: Training in theoretical physics at the B.Sc. level

Form of Testing and Examination: Written or oral examination

Length of Course: 1 semester

Aims of the Course:
The course introduces the background in differential geometry necessary to understand the geometrically oriented languages of modern theoretical physics. Applications include the coordinate invariant formulation of electrodynamics, phase space and symplectic mechanics, and a brief introduction to the foundations of general relativity.

Contents of the Course:
- exterior calculus
- manifolds
- Lie groups
- fibre bundles

Recommended Literature:
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Topology for Physicists (T)

Course No.: physics70d

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>3+1</td>
<td>6</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Bachelor of physics or mathematics; the basics of exterior calculus are assumed

Form of Testing and Examination:
Written or oral examination

Length of Course:
1 semester

Aims of the Course:
This course gives an introduction to various topological concepts and results that play an important role in modern theoretical physics.

Contents of the Course:
Elements of homotopy theory: homeomorphic spaces, homotopic maps, fundamental group, covering spaces, homotopy groups, long exact homotopy sequence of a fibration
Homology and cohomology: Poincare lemma, Mayer-Vietoris sequence, Cech-deRham complex, Hurewicz isomorphism theorem, spectral sequences
Vector bundles and characteristic classes: Euler form, Thom isomorphism, Chern classes
Applications: Berry phase; Dirac monopole problem; visualization of closed differential forms by Poincare duality; cohomology of electrical conductance; supersymmetry and Morse theory; index theorems; homotopy classification of topological insulators

Recommended Literature:
A.S. Schwarz, Topology for physicists (Springer, 1994)
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Nuclear physics II (E)

Course No.: physics70d

course

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>3</td>
<td>5</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Nuclear Physics I, Quantum Mechanics

Form of Testing and Examination:
Part of the obligatory courses for area of specialisation Nuclear and Particle Physics, separate oral examination is possible exceptionally.

Length of Course:
1 semester

Aims of the Course:
Study of nuclear reactions, fission and fusion.

Contents of the Course:
- Kinematics in nuclear reactions
- Cross section
- Rutherford scattering
- Scattering in quantum mechanics
- The Born approximation
- Partial wave analysis
- Inelastic scattering, resonances
- Optical model
- Direct, compound, spallation and fragmentation reactions
- Neutron sources and detectors
- Neutron cross sections
- Fission
- Nuclear reactors
- Fusion
- Solar fusion
- Man-made thermonuclear fusion
- Controlled thermonuclear fusion

Recommended Literature:
A script for parts of the course will be distributed during the course.
K.S. Krane, Introductory nuclear physics, chapters 11-14
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Physics of Detectors (E/A)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>3</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Nuclear Physics I, Quantum Mechanics

Form of Testing and Examination:
Part of the obligatory courses for area of specialisation Nuclear and Particle Physics, separate oral examination is possible exceptionally.

Length of Course:
1 semester

Aims of the Course:
Study detection methods of experimental techniques in nuclear and particle physics.

Contents of the Course:
- Interaction of electrons and charged heavy particles in matter
- Coherent effects: Cherenkov and transition radiation
- Interaction of gamma-radiation in matter
- Detection of neutal particles: neutrons and neutrinos
- Measurement of 4-momentum in particle physics
- Ionisation detectors: Bragg chamber, avalanche detectors
- Position sensitive detectors: drift chambers, time-projection chamber
- Anorganic and organic scintillators
- Energy detection, calorimeter and shower detectors
- Semiconductor detectors
- Position sensitive Si detectors (strip-, pixel-detectors)
- Ge detectors
- Low background measurements
- Lifetime measurements
- Mössbauer Spectroscopy
- Basic principles of analoge and digital signal processing

Recommended Literature:
A script or slides of the course will be distributed during the course.
R. Leo, Techniques for Nuclear and Particle Physics Experiments
K Kleinknecht, Detektoren für Teilchenstrahlung
G.F. Knoll, Radiation Detection and Measurement

March 2011
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Particle physics (E)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>3</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Quantum Mechanics

Form of Testing and Examination:
Part of the obligatory courses for area of specialisation Nuclear and Particle Physics, separate oral examination is possible exceptionally.

Length of Course:
1 semester

Aims of the Course:
Introduction into particle physics, accelerators and detectors

Contents of the Course:
- Relativistic kinematics
- Interaction of radiation with matter
- Particle accelerators
- Targets and detectors
- Symmetries in particle physics
- QED
- Weak interaction, neutrinos
- Quark model
- QCD
- Standard model
- Cosmology

Recommended Literature:
A script for course will be available on-line

March 2011
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Groundbreaking experiments in nuclear physics (E)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in Nuclear Physics

Form of Testing and Examination:
Part of courses for area of specialisation Nuclear and Particle Physics, separate oral examination is possible exceptionally.

Length of Course:
1 semester

Aims of the Course:
Study of original publications of fundamental experiments in nuclear physics. The students should participate actively in the course.

Contents of the Course:
- Discovery of radioactivity
- Rutherford and his many discoveries using alpha sources
- The discovery of the neutron and deuteron
- Determination of magnetic moments
- Hofstadters electron scattering experiments
- The use of cosmic rays to discover mesons
- Fermi work in neutron physics
- Properties of neutrinos
- Mößbauer effekt

Recommended Literature:
Will be distributed during the course.
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Condensed Matter Physics II (E)

Course No.: physics70d

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>3</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in condensed matter physics and quantum mechanics

Form of Testing and Examination:
Oral examination

Length of Course:
2 semesters

Aims of the Course:
Advanced topics in condensed matter physics with examples of current research.

Contents of the Course:
The entire course (Condensed Matter I & II, given in 2 semesters) covers the following topics:
Crystal structure and binding
Reciprocal space
Lattice dynamics and thermal properties
Electronic structure (free-electron gas, Fermi surface, band structure)
Semiconductors and metals
Transport properties
Dielectric function and screening
Superconductivity
Magnetism

Recommended Literature:
Skriptum (available during the course)
Ashcroft/Mermin: Solid State Physics
Kittel: Introduction to Solid State Physics
Ibach/Lüth: Festkörperphysik
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Semiconductor Physics and Nanoscience (E/A)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in condensed matter physics

Form of Testing and Examination:
No examination

Length of Course:
1 semester

Aims of the Course:
Understanding of theoretical and experimental concepts of semiconductor physics, nanotechnology as well as aspects of future information technology.
Knowledge of basic fields and important applications of information technology.

Contents of the Course:
Semiconducting material and nanostructures represent the backbone of modern electronics and information technology. At the same time they are fundamental to the research of problems of modern solid state physics, information technology and biophysics. This lecture will provide an introduction to semiconductor physics and its applications.
Topics covered are
- introduction to semiconductor physics, crystalline structure, band structure, electronic and optical properties,
- heterostructures, junction and interfaces,
- basic semiconductor device concepts,
- up to date techniques and strategies of information technology ranging from nowadays preparation technologies and nanoscience to concepts of molecular electronic and bioelectronics.

Recommended Literature:
Skriptum (available during the course)
Bergmann/Schäfer, Experimentalphysik (Band 6: Festkörper)
Ibach/Lüth, Festkörperphysik
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Superconductivity (E/A)

Course No.: physics70d

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in condensed matter physics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of the fundamental aspects of superconductivity.

Contents of the Course:
The lecture provides an overview of the fundamental aspects of superconductivity, theoretical description and technological applications, including the following topics:

- Basic experimental facts and critical parameters
- Phenomenological description: London equations
- Ginzburg-Landau theory
- Magnetic flux quantization
- Type I and type II superconductors, characteristic length scales, vortices
- Microscopic description: BSC theory
- Electron-phonon interaction, Cooper pairs
- Josephson effects
- Applications of superconductivity in science, transport, and medicine
- Brief introduction to unconventional superconductivity with recent examples

Recommended Literature:
V. V. Schmidt: The Physics of Superconductors (1997)
J. R. Waldram: Superconductivity of Metals and Cuprates (1996)
D. R. Tilley and J. Tilley: Superfluidity and Superconductivity (1990)
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Magnetism (E/A)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in condensed matter physics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of magnetism in condensed matter systems

Contents of the Course:
The lecture introduces to the magnetism in condensed matter systems. Starting from basic concepts of the magnetic properties of free atoms it is aimed to illustrate the extremely rich field of collective magnetism that arises from the mutual interaction of an extremely large number of interacting particles.
Topics covered are
- Magnetism of free atoms
- Magnetism of ions in the crystal electric field
- Magnetic interactions and ordering phenomena
- Magnetic ground states and excitations
- Itinerant magnetism
- Magnetic frustration and low dimensionality
- Magnetic order vs. competing ordering phenomena

Recommended Literature:
- Skriptum (available during the course)
- S. Blundell, Magnetism in Condensed Matter
- Ashcroft/Mermin, Solid State Physics
- Kittel, Festkörperphysik
Module: Elective Advanced Lectures: BCGS Courses
Module No.: physics70d

Course: Experimental methods in condensed matter physics (E/A)
Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td></td>
<td>3 WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in condensed matter physics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of experimental concepts in condensed matter science
Knowledge of basic fields and important applications

Contents of the Course:
The lecture introduces to modern experimental approaches in solid state physics. Basic concepts are illustrated with examples of physical problems investigated employing different methods.
Topics covered are
Introduction on sample preparation
X-ray powder diffraction
Specific heat, Thermal expansion
Magnetization and magnetic susceptibility
DC-Transport
Dielectric spectroscopy
Photo-emission spectroscopy
Inelastic scattering (neutrons, light)
THz spectroscopy / Optical spectroscopy
Scanning probe microscopy/spectroscopy (AFM, STM)

Recommended Literature:
Skriptum (available during the course)
Bergmann/Schäfer, Experimentalphysik (Band 6: Festkörper)
Ibach/Lüth, Festkörperphysik
Ashcroft/Mermin, solid state physics
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Physics of Surfaces and Nanostructures (E/A)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge of solid state physics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of fundamental concepts in surface and nanostructure science
Knowledge of basic fields and important applications

Contents of the Course:
The lecture introduces to modern topics of surface and nanostructure physics. Basic concepts are illustrated with examples and the link to technical applications is emphasised. Topics covered are
- surface structure and defects,
- adsorption and heterogeneous catalysis,
- surface thermodynamics and energetics
- surface electronic structure and quantum dots,
- magnetism at surfaces
- epitaxy and thin film processes,
- oxide films
- ion beam processes at surfaces,
- clusters,
- graphene

Recommended Literature:
Michely: Skriptum (available during the course)
H. Ibach: Physics of Surfaces and Interfaces (Springer, Berlin 2006)
M. Prutton: Introduction to Surface Physics (Oxford University Press, 1994)
M. Henzler/ W. Göpel: Oberflächenphysik des Festkörpers (Teubner, Stuttgart 1994)
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Introduction to neutron scattering (E/A)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td></td>
<td>3 ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in condensed matter physics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of the basic concepts and techniques of elastic and inelastic neutron scattering experiments.

Contents of the Course:
The lecture introduces to the techniques of elastic and inelastic neutron scattering that can be used to determine the crystal or magnetic structure as well as the dispersion of nuclear or magnetic excitations. Topics covered are:
- Crystal structures and reciprocal space
- Neutron powder diffraction
- Single-crystal diffraction
- Structure refinements
- Inelastic neutron scattering
- Phonon dispersion
- Magnetic excitations
- Examples of current research (high-temperature superconductors, manganates with colossal magnetoresistivity, multiferroics)
- Polarized neutron scattering

Recommended Literature:
- Skriptum (available during the course)
- G. E. Bacon, Neutron Diffraction, Oxford (1979)
- Izyumov, Ozerov, Magnetic Neutron DiffractionPlenum (1970)
- Squires, Introduction to the theory of Thermal Neutron scattering, Cambridge (1978)
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Optical Spectroscopy (E/A)

Course No.: physics70d

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>3</td>
<td>WT/ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge in condensed matter physics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding of the basic concepts and techniques of optical spectroscopy on solid-state samples.

Contents of the Course:
Topics covered are:
- Electromagnetic waves in matter, dielectric function
- Electromagnetic response of metals and insulators, Drude-Lorentz model
- Kramers-Kronig relations
- THz spectroscopy (time domain and cw)
- Fourier-transform spectroscopy
- Ellipsometry
- Examples of current research (phonons, magnons, orbital excitations, superconductors, …)

Recommended Literature:
- Skriptum (available during the course)
- Klingshirn: Semiconductor Optics (Springer, 1997)
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Astrochemistry (E/A)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Atomic Physics, Molecular Physics and Quantum Mechanics at the level of the bachelor courses in physics, Molecular Physics I

Form of Testing and Examination:
Oral Examination

Length of Course:
1 semester

Aims of the Course:
The lecture introduces to astrochemistry of various astrophysical environments. Fundamental processes, such as molecular collisions, fragmentations, and chemical reactions, are explained, and implications for astrophysical observations by means of high resolution spectroscopy are treated.

Contents of the Course:
- Detection of Molecules in Space
- Elementary Chemical Processes
- Chemical Networks
- Grain Formation (Condensation)
- Properties of Grains and Ice
- Grain Chemistry
- Diffuse Clouds, Shocks, Dark Clouds, Star Forming Regions

Recommended Literature:
A. Tielens "The Physics and Chemistry of the Interstellar Medium" Cambridge University Press, 2005
J. Lequeux "The interstellar Medium" Spinger, 2004
A. Shaw "Astrochemistry" Wiley, 2006
D. Whittet "Dust in the Galactic Environment", Taylor and Francis, 2nd edition, 2002
Module: Elective Advanced Lectures:
BCGS Courses
Module No.: physics70d

Course: Fundamentals of Molecular Symmetry (E/A/T)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture</td>
<td>English</td>
<td>2</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Basic knowledge of quantum mechanics

Form of Testing and Examination:
Oral Examination

Length of Course:
1 semester

Aims of the Course:
Understanding the fundamental concepts of representation theory and its application to describe the symmetry of molecules

Contents of the Course:
The lecture introduces to group theory with special emphasis on representations and their use to describe the symmetry of molecules in high-resolution spectroscopy and in molecular physics generally. The theory is accompanied by a series of "prototypical" examples. Topics covered are:
- symmetry in general and symmetry of a molecule.
- groups and point groups.
- irreducible representations, characters.
- vanishing integral rule
- the Complete Nuclear Permutation-Inversion (CNPI) group.
- the Molecular Symmetry (MS) group.
- the molecular point group.
- classification of molecular states: electronic, vibrational, rotational, and nuclear spin states
- nuclear spin statistical weights
- hyperfine structure
- non-rigid molecules (inversion, internal rotation)

Recommended Literature:
Jensen: Script (text of powerpoint presentation files; available during the course)
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Physical biology (T/A)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td>8</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced statistical mechanics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Acquaintance with basic concepts of molecular and evolutionary biology; understanding of statistical issues arising in the analysis of sequence data and the application of methods from statistical physics addressing them.

Contents of the Course:
Statistics of the genome
Sequence analysis and sequence alignment
Evolutionary theory and population genetics
Theory of bio-molecular networks

Recommended Literature:
F. Kepes, Biological Networks (World Scientific, Singapore 2007)
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Statistical physics of soft matter and biomolecules (T/A)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td>8</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced statistical mechanics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding the molecular structure and mesoscopic properties of various types of soft matter systems, in particular with regard to their role in living cells.

Contents of the Course:
Colloids, polymers and amphiphiles
Biopolymers and proteins
Membranes
Physics of the cell

Recommended Literature:
J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).
S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, MA, 1994).
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Statistical physics far from equilibrium (T)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td>8</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced statistical mechanics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding the generic behavior of fluctuation-dominated systems far from equilibrium, and acquaintance with the basic mathematical tools used for their description.

Contents of the Course:
Stochastic methods
Transport processes
Scale-invariant growth
Pattern formation far from equilibrium

Recommended Literature:
M. Kardar, Statistical Physics of Fields (Cambridge University Press, 2007)
Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Disordered systems (T)

Course No.: [Image]

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>4+2</td>
<td>8</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Advanced statistical mechanics

Form of Testing and Examination:
Oral examination

Length of Course:
1 semester

Aims of the Course:
Understanding the novel types of behaviour that arise in systems with quenched disorder, as well as the specific mathematical challenges associated with their theoretical description.

Contents of the Course:
Disorder average
Replica methods
Percolation
Phase transitions in disordered systems
Localization
Glassy dynamics

Recommended Literature:
D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London 1994)
T. Nattermann, lecture notes
Degree: M.Sc. in Physics (PO von 2014)

Module: Elective Advanced Lectures: BCGS Courses

Module No.: physics70d

Course: Nonequilibrium physics with interdisciplinary applications (T)

Course No.:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td>4</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:

Preparation:
Statistical mechanics

Form of Testing and Examination:
Oral examination or term paper

Length of Course:
1 semester

Aims of the Course:
Acquaintance with basic concepts of nonequilibrium physics; ability to apply the basic methods for the investigation of nonequilibrium problems; application of physics-based models to interdisciplinary problems.

Contents of the Course:
Principles of nonequilibrium physics
Stochastic systems and their description (master equation, Fokker-Planck equation,..)
Analytical and numerical methods
Nonequilibrium phase transitions
Applications to traffic, pedestrian dynamics, economic systems, biology, pattern formation,..

Recommended Literature:
V. Privman (Ed.): Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, 1997)
N.G.Van Kampen: Stochastic Processes in Physics and Chemistry (Elsevier, 1992)
Course: Probability theory and stochastic processes for physicists (T)

Category	Type	Language	Teaching hours	CP	Semester
Elective | Lecture | English | 3 | | WT

Requirements for Participation:

Preparation:
Statistical mechanics on the bachelor level

Form of Testing and Examination:
Oral examination or term paper

Length of Course:
1 semester

Aims of the Course:
Acquaintance with probabilistic concepts and stochastic methods commonly used in the theory of disordered systems and nonequilibrium phenomena, as well as in interdisciplinary applications of statistical physics.

Contents of the Course:
Limit laws and extremal statistics
Point processes
Markov chains and birth-death processes
Stochastic differential equations and path integrals
Large deviations and rare events

Recommended Literature:
N.G. Van Kampen: Stochastic Processes in Physics and Chemistry (Elsevier, 1992)
Module: Scientific Exploration of the Master Thesis Topic

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Scientific Exploration of the Master Thesis Topic</td>
<td>physics911</td>
<td>15</td>
<td></td>
<td>450 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Successful completion of 60 credit points from the first year of the Master phase, including 7 cp from the Module physics601, 7 cp from the Elective Course Theoretical Physics and 24 cp from the Specialization Modules

Form of Examination:
Presentation

Content:
Under guidance of the supervisor of the Master Thesis topic, the student shall explore the science field, read the relevant recent literature, and perhaps participate in further specialised classes and in seminars. The student shall write an essay about the acquired knowledge, which may serve as the introduction part of the M.Sc. Thesis

Aims/Skills:
The student shall demonstrate to have understood the scientific question to be studied in the Master Thesis

Course achievement/Criteria for awarding cp’s:
none

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Useable for:
Masterstudiengang Physik, Pflicht, Semester: 3
Module: Methods and Project Planning

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methods and Project Planning</td>
<td>physics921</td>
<td>15</td>
<td></td>
<td>450 hrs</td>
<td>WT</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Successful completion of 60 credit points from the first year of the Master phase, including 7 cp from the Module physics601, 7 cp from the Elective Course Theoretical Physics and 24 cp from the Specialization Modules

Form of Examination:
Written proposal

Content:
Under guidance of the supervisor of the planned Master Thesis topic, the student shall acquire knowledge about the methods required to carry out the Master Thesis project. This may include the participation in specialised seminars or specialised classes for the master programme. The student shall plan the steps needed to successfully complete the Master Thesis

Aims/Skills:
The student shall demonstrate to have understood the methods to be used in the Master Thesis research. The project plan has to be presented

Course achievement/Criteria for awarding cp’s:
none

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Useable for:
Masterstudiengang Physik, Pflicht, Semester: 3
Module: Master Thesis

Module Elements:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Course Title</th>
<th>Number</th>
<th>CP</th>
<th>Type</th>
<th>Workload</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Master Thesis</td>
<td>physics931</td>
<td>30</td>
<td></td>
<td>900 hrs</td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements for Participation:
Successful completion of 60 credit points from the first year of the Master phase, including 7 cp from the Module physics601, 7 cp from the Elective Course Theoretical Physics and 24 cp from the Specialization Modules

Form of Examination:
Master Thesis

Content:
Under guidance of the supervisor of the Master Thesis topic, the student shall carry out the research of the Master Thesis project

Aims/Skills:
The student shall demonstrate to be able to do research

Course achievement/Criteria for awarding cp’s:
Oral presentation

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

Useable for:
Masterstudiengang Physik, Pflicht, Semester: 4