Degree: Module: Elective Advanced Lectures: **Theoretical Physics** Module No.: physics70c Course: universitätbonn # **Transport in mesoscopic systems** **(T)** Course No.: physics762 | Category | Туре | Language | Teaching hours | СР | Semester | |----------|------------------------|----------|----------------|----|----------| | Elective | Lecture with exercises | English | 2+1 | 5 | WT/ST | ## Requirements for Participation: ## Preparation: Classical mechanics Elementary thermodynamics and statistical physics (physik521) Advanced quantum theory (physics606) Introductory theoretical condensed matter physics (physics617) # Form of Testing and Examination: Requirements for the examination (written or oral); successful work with the exercises # Length of Course: 1 semester ## Aims of the Course: Understanding essential transport phenomena in solids and mesoscopic systems Acquisition of important methods for treating transport problems #### **Contents of the Course:** Linear response theory Disordered and ballistic systems Semiclassical approximation Introduction to quantum chaos theory, chaos and integrability in classical and quantum mechanics Elements of random matrix theory Specific problems of mesoscopic transport (weak localization, universal conductance fluctuations, shot noise, spin-dependent transport, etc.) Quantum field theory away from thermodynamic equilibrium ## **Recommended Literature:** K. Richter, Semiclassical Theory of Mesoscopic Quantum Systems, Springer, 2000 (http://www.physik.uni-regensburg.de/forschung/richter/richter/pages/research/springer-tracts-161.pdf) M. Brack, R. K. Bhaduri, Semiclassical Physics, Westview Press, 2003 S. Datta, Electronic Transport in Mesoscopic Systems, Cambrige University Press, 1995 M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York, 1990 F. Haake, Quantum signatures of chaos, Springer, 2001 M. L. Mehta, Random matrices, Elsevier, 2004 J. Imry, Introduction to mesoscopic physics, Oxford University Press Th. Giamarchi, The physics of one-dimensional systems, Oxford University Press